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Semantics and Quantificatior
in

Natural Language Question Answering

W. A. Woods

Bolt Beranek and Newman Inc.

Cambridge, Massachusetts

Abstract

This paper is concerned with the semantic interpretation of
natural English sentences by a computerized question-answering
system, and specifically with tnec problems of interpreting and
using guantification in such systems. These issues are presented
and discussed from the perspective of four different natural
language understanding systems with which the author has been
involved. The presentation includes the process of semantic
interpretation, the nature and organization of semantic
interpretation rules, a notation for representing semantic
interpretations (the meaning representation language), the
semantics of that notation, and the generation and scoping of
quantifiers. Also discussed are a variety of 1loose ends, open
questions, and directions for future research. Particular

attention is given to the interaction of syntactic, semantic (and

pragmatic) information.
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1. Introduction

The history of communication between man and machines has
followed a path of increasing provision for the convenience and
ease of communication on the part of the human. From raw binary
and octal numeric machine languages, through various symbolic
assembly, scientific, business and higher-level languages,
programming languages have increasingly adopted notations that
are more natural and meaningful to a human user. The important
characteristic of this trend 1is the elevation of the level at
which instructions are specified from the low level details of
the machine operations to high level descriptions of the task to
be done, leaving out details that can be filled in by the
computer. The ideal product of such continued evolution would be
a system in which the wuser specifies what he wants done in a
language that is so natural that negligible mental effort |is
required to recast the specification from the form in which he
formulates it to that which the machine requires. The logical
choice for such a language is the persorn's own natural language

(which in this paper I will assume %to be English}.

For a naive, inexperienced user, almost every transaction
with current computer systems requires considerable mental effort
deciding how to express the request in the machine's language.
Moreover, even for toechnical specialists who deal with a computer
constantly, there is a distinction between the things that they

do often and remember well, and many cther things that require
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consulting a manual and/or much conscious thought in order to
determine the «correct machine "incantation®™ to achieve the
desired effect. Thus, whether a user is experienced or naive,
and whether he 1is a frequent or occasional user, there arise
occasions where he knows what he wants the machine to do and can
express it in natural language, but does not know exactly how to
axpress it to the machine. A facility for machine understanding
of natural language could greatly improve the efficiency of
expression in such situations -- both in speed and convenience,

and in decreased likelihood of error.

For a number of years, I have been pursuing a 1long range
research objective of making such communication possible between
a man and a machine. During this period, my colleagues and 1I‘
have constructed several natural language question-answering
systems and developed a few techniques for solving some of the
problems that arise. 1In this paper, I will present some of those
techniques, focusing on the problem of handling natural
quantification as it occurs 1in English. As an organizing
principle, I will present thc ideas in a rouyghly historical
order, with commentary on the factors leading to the selection of
various notations and algorithms, on limitations that have been
discovered as a result of experience, and on directions in which

solutions lie.

Among the systems that I will use for examples are a flight

schedules question-answering system (Wocds, 1967 and 1968), a




system to ask questions about an ATN grammar (not previously
published), the LUNAR system, which answers questions about the
chemical analyses of the Apollo 11 moon rocks (Woods et al.,
1972, Woods, 1973b), and a system for natural language trip

planning and budget management (Woods et al., 1976).

Some of the techniques used in these systems, especially the
use of the augmented transition network (ATN) grammar formalism
(Woods, 1969, 1978, 1973a), have become widely known and are now
being used in many different systems and applications. However,
other details, including the method of performing semantic
interpretation, the treatment of quantification and anaphoric
reference, and several other problems, have not been adequately

described in accessible publications.

This paper is intended to be a discussion of a set of
techniques, the problems they solve, and the relative advantages
and disadvantages of several alternative approaches. Because of
the 1length of the presentation, no attempt has been made to
survey the field or give an exhaustive comparison of these
techniques to those of other researchers. In general, most other
systems are not sufficiently formalized at a conceptual level
that such comparisons can be made on the basis of published
information. In some cases, the mechanisms described here can be
taken as models of what is being done in other systems.
Certainly, the general notion of computing a representation of

the meaning of a phra.e from representations of the meanings of
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its constituents by means of a rule is sufficiently general to
model virtually any semantic interpretation process. The details
of how most systems handle such problems as the nesting of
multiple quantification, however, are difficult to fathom.
Hopefully the presentation here and the associated discussion
will enable the reader to evaluate for himself, with some degree

of discrimination, the capabilities of other systems.

2., Historical Context

2,1 Airlines Flight Schedules

Airlines flight schedules was the focusing context for a
gedanken system for semantic interpretation that I developed as
my Ph.D. thesis at Harvard University (Woods, 1967). 1In that
thesis, I was concerned with the problem of "semantic
interpretation" -- making the transition from a syntactic
analysis of input questions (such as could be produced by parsing
with a formal grammar of English) to a concrete specification of
what the computer was to do to answer the question. Prior to
that time, this problem had usually been attacked by developing a
set of structural conventions for storing answers in the data
base and transforming the input questions {(frequently by ad hoc
procedures) into patterns that could be matched against that data
base. Simmons {1965) presents a survey of the state of the art

of the field at that time.




In many of the approaches existing at that time, the entire
process of semantic interpretation was built on particular
assumptions about the structure of the data base. I was
searching for a method of semantic interpretation that would be
independent of particular assumptions about data base structure
and, in particular, would permit a single language understanding
system to talk to many different data bases and permit the
specification of requests whose answers required the integration
of information from several different data bases. In searching
for such an approach, I looked more to the philosophy of language
and the study of meaning than to data structures and data base

design.

The method I developed was essentially an interpretation of
Carnap's notion ¢f truth conditions (Carnap, 1964a). I chose to
rzpresent those truth conditions by formal procedures that could
be executed by a machine. The representation that I wused for
expressing meanings was at once a notational variant of the
standard predicate calculus notation and also a represention of
an executable procedure. The ultimate definition of the meanings
cf expreésions in this notation were the procedures that they
would execute to determine the truth of propositions, compute
the answers to questions, and carry out commands. This notion,
which I refzrred to as "procedural semantics," picks up the chain
of semantic specification from the philosophers at the level of
abstract truth conditions, and carries it to a formal

specification of those truth conditions as procedures in a

computer language.
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The idea of procedural semantics has since had considerable
success as an engineering technique for constructing natural
language understanding systems, and has also developed somewhat
as a theory of meaning. In my paper "Meaning and Machines"
(Woods, 1973c), I discuss some of the more theoretical issues of

tre adequacy of procedural semantics as a theory of meaning.

The flight schedules application initially served to focus
the 1issues on particular meanings of particular sentences. The
application assumed a data base essentially the same as the
information contained in the Official Airline Guide (OAG, 1966)
-- that 1s, a li3t of flights, their departure and arrival times
from different airports, their flight nuubers and airlines,
number of stops, whether they serve meals, etc. Specific
questions were interpreted as requesting operations to be
verformed on the tables that make up tnis data base to compute

answers.

The semantic interpretation system presented in my thesis
was subsequently implemented for this application with an ATN

grammar of English to provide syntax trees for interpretation,

but without an actual data base. The system produced formal

semantic interpretations for questions such as:

"What flights go from Boston to Washington?"
"Is there » flight to Washington before 8:00 a.m.?

"Do they s trve lunch on the 11:006 a.m. flight to Toronto?".
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2.2 Answering Questions about ATN Grammars

To prove the point that the semantic interpretation system
used in the flight schedules domain was in fact general for
arbitrary data bases and independent of the detailed structure of
the data base, immediately after completing that system, I looked
for another data base to which I cor apply the method. I
wanted a data base that had not been designed to satisfy any
assumptions about the method of question interpretation to be
used. The most convenient such data base that I had at hand was
the data structure for the ATN grammar that was being used by the
system to parse its input sentences. This data base had a
structure that was intended to support the parser, and had not
been designed with any forethought to using it as a data base for

q.«ec<tion answering.

An ATN grammar, viewed as a data base, conceptually consists
of a set of named states with arcs connecting them, corresponding
to transitions that can be made in the course of parsing. Arcs
connecting states are of several kinds depending on what, if
anything,. they consume from the input string when they are used
to make a transition. For example, a word arc consumes a single
word from the input, a push arc consumes a constituent phrase of
the type pushed for, and a jump arc consumes no input but merely
males a state transition. See Woods (1978, 1973a) for a further
discussion of ATN grammars. These states and arcs constitute the

data base entities about which questicns may be asked.
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In addition to the entities that actually exist as data
objects in the internal structure for the grammar, there are some
other important objects that exist conceptually but are not
explicit in the grammar. The most important such entity is a
path. A path is a sequence of arcs that connect to each other in
the order in which they could be taken in the parsing of a
sentence. Although paths are implicit in the grammar, they are
not explicit in the data structure -- i.e., there is no internal
data object that can be pointed to in the grammar that
corresponds to a path. Nevertheless, one should be able to talk
about paths and ask questions about them. The techniques I will

describe can handle such entities.

Examples of the kinds of sentences this "grammar information

system" could deal with are:

"Is there a jump arc from state S/ to S/NP2?"
"How many arcs leave state NP/?"
"How many non-looping paths connect state S/ with S/POP?"

"Show me all arcs entering state S/VP."

2,3 The LUNAR System

The LUNAR system (Woods et al., 1972; Woods, 1973b) was
originally developed with support from the NASA Manned Spacecraft
Center as a research prototype for a system to enable a lunar
geologist to conveniently access, compare, and evaluate the

chemical analysis data on lunar rock and soil composition that




was accumulating as a result of the Apollo moon missions. The
target of the research was to develop a natural language
understanding facility sufficiently natural and complete that the
task of selecting the wording for a request would require

negligible effort for the geologist user.

The application envisaged was a system that would be
accessible to geologists anywhere in the country by teletype
connections and would enable them to access the NASA data base
without having to learn either the programming language in which
the system was implemented or the formata and conventions of the
data base representations. For example, the geologist should be
able to ask questions such as "What is the average concentration
of aluminum in high-alkali rocks?" without having to know that
aluminum was conventionally represented in the data base as
AL203, that the high-alkali rocks (also known as "volcanics" or
"fine-grained igneous") were conventionally referred to as TYPEAS
in the data base, nor any details such as the name of the file on
which the data was stored, the names of the fields in the data
records, or any of a myriad of other details normally required to

use a data base system.

To a substantial extent, such a capability was developed,
although never fully put to the test of real operational use. 1In
a demonstration of a preliminary version of the system in 1971
(Woods, 1973b), 78 percent of the questions asked of the system

were understood and answer.d correctly, and another 12 percent




failed due to trivial clerical errors such as dictionary coding
errors in the not fully-debugged system. Only 10 percent of the
questions failed because of significant parsing or semantic
interpretation problems. Although the requests entered into the
system were restricted to questions that were in fact about the
contents of the data base, and comparatives (which were not
handled at that time) were excluded, the requests were otherwise
freely expressed in natural English without any prior
instructions as to phrasing and were typed into the system

exactly as they were asked.

The LUNAR system allowed a user to ask questions, compute
averages and ratios, and make listings of selected subsets of the
data. One could also retrieve references from a keyphrase index
and make changes to the data base. The system permitted the user
to easily compare the measurements of different researchers,
compare the concentrations of elements or isotopes in different
types of samples or in different phases of a sample, compute
averages over various classes of samples, compute ratios of two
constituents of a sample, etc. -- all in straightforward natural

English.

Examples of requests understood by the system are:

"Give me all lunar samples with magnetite."
"In which samples has apatite been identified?"

"What is the specific activity of Al126 in soil”™ "’

- 11 -




*Analyses of strontium in plagioclase."

"Wwhat are the plag analyses for breccias?"

"Wwhat is the average concentration of olivine in breccias?"
"What is the averagc age of the basalts?"

"What is the average potassium/rubidium ratio in basalts?"
"In which breccias is the average concentration of

titanium greater than 6 percent?"

2.4 TRIPSYS

TRIPSYS 1is a system that was developed as the context for a
research project in continuous speech understanding (Woods et
al., 1976). The overall system of which it was a part was called
HWIM (for "Hear What I Mean"). TRIPSYS understands and answers
questions about planned and taken trips, travel budgets and their
status, costs of various modes of transportation to various
places, per diems in various places, conferences and other events
for which trips might be taken, people in an organization, the
contracts they work on, the travel budgets of those contracts,
and a variety of other information that is useful for planning
trips andlmanaging travel budgets. It is intended to be a
small-scale example of a general management problem. TRIPSYS
also permits some natural language entry of information into the
data base, and knows how to prompt the user for additional
information that was not given voluntarily. Examples of the

kinds of requests that TRIPSYS was designed to handle are:




"Plan a trip for two people to San Diego to attend the ASA
meeting."
"Estimate the cost of that trip."

"Is there any money left in the Speech budget?"

3., Overview

Since the LUNAR system is the most fully developed and most
widely known of the above systems, I will use it as the principal
focus throughout this paper. A brief overview of the LUNAR
system was presented in the 1973 National Computer Conference
(Woods, 1973b), and an extensive technical report documenting the
system was produced (Woods et al., 1972). However, there has
been no generally available document that gives a sufficiently
complete picture of the capabilities of the system and how it
works. Consequently, I will first give a brief introduction to
the structure of the system as a whole, and then proceed to
relatively detailed accounts of some of the interpretation
problems that were solved. Examples from the other three systems
will be used where they are more self-explanatory or more clearly
illustrate a principle. Where the other systems differ in

structure from the LUNAR system, that will be pointed out.

3.1 Structure of the LUNAR System

The LUNAR system consists of three principal components: a

general purpose grammar and parser for a large subset of natural

- 13 -




English, a rule-driven semantic interpretation component using
pattern -> action rules for transforming a syntactic
representation of an input sentence into a representation of what
it means, and a data base retrieval and inference component that
stores and manipulates the data base and performs computations on
it. The first two components constitute a language understanding
component that ¢transforms an input English sentence into a
disposable program for carrying out its intent (answering a
question or making some change to the data base). The third
component executes such programs against the data base to
determine the answer to queries and to effect changes in the data

base.

The system contains a dictionary of approximately 3500
words, a grammar for a fairly extensive subset of natural
English, and two data bases: a table of chemical analyses with
13,000 entries, and a topic index to documents with approximately
10,000 postings. The system also contains facilities for
morphological analysis o©0f regularly inflected words, for
maintaining a discourse directory of possible antecedents for
pronouns and other anaphoric expressions, and for determining how

much and what information to display in response to a request.

The grammar used by the parsing component of the system is
an augmented transition network (ATN). The ATN grammar model has
been relatively well documented elsewhere (Woods, 1978, 1973a),

so I will not go into detail here describing it, except to point

- 14 -
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out that it produces syntactic tree structures comparable to the
"deep structures®™ assigned by a Chomsky type transformational
grammar, vintage 1965 (Chomsky, 1965). Likewise, I will not go
into much detail describing the inner workings of the data base
inference and retrieval component, except to describe the
semantics of the formal meaning representation language and
discuss some of its advantages. What I will describe here are
the problems of semantic interpretation that were handled by the

system.

All of the systems mentioned in Section 2 share this same

basic structure with the following exceptions:

- The airline flight schedules problem was implemented up
through the parsing and interpretation stage, but was never
coupled to a real data base. This system was implemented
solely to validate the formal semantic interpretation

procedure.

- The TRIPSYS system does not construct a separate syntactic
tree structure to be given to a semantic interpreter, but
rather the ATN grammar builds semantic interpretations

directly as its output representation.

3.2 Semantics in LUNAR

A semantic specification of a natural language consists of

essentially three parts:

- 15 -
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a) A meaning representation language (MRL) -- a notation for
semantic representation for the meanings of sentences,

b) A specification of the semantics of the MRL notation --
i.e., a specification of what its expressions mean, and

c) A semantic interpretation procedure -- i.e., a procedure to
construct the appropriate semantic representations for a

given natural language sentence.

Accordingly, the semantic framework of the LUNAR system
consists of three parts: a semantic notation in which to
represent the meanings of sentences, a specification of the
semantics of this notation (by means of formal procedures), and a
procedure for assigning representations in the notation to input

sentences.

In previous writings on LUNAR, I have referred to the
semantic notation as a query language, but I will refer to it
here, following a currently more popular terminology as a
"meaning representation language" or MRL. To represent
expressions in the MRL, I will use the so-called "Cambridge
Polish™ notation in which the application of an operator to its
arguments is represented with the operator preceding its operands
and the entire group surrounded by parentheses. This notation
places the operator in a standard position independent of the
number of arguments it takes and uses the parentheses to indicate
scoping of operators rather than depending on a fixed degree of

the operator as in the "ordinary" Polish prefix notation (thus

- 16 -




facilitating operators that take a variable number of arguments) .
Cambridge Polish notation 1is the notation used for the
S-expressions of the programming language LISP (Bobrow et al.,

1968), in which LUNAR is implemented.

Occasionally, the notations used for illustration will be
slightly simplified from the form actually used in LUNAR to avoid
confusion. For example, the DATALINE function used in LUNAR
actually takes another argument for a data file that is omitted

here.

4., The Meaning Representation Language

There are a number of requirements for a meaning

representation language, but the most important ones are these:

a) It must be capable of representing precisely, formally, and
unambiguously any interpretation that a human reader can
place on a sentence.

b) It should facilitate an algorithmic translation from English
sentences into their corresponding semantic representations.

c¢) It should facilitate subsequent intelligent processing of

the resulting interpretation.

The LUNAR MRL consists of an extended notational variant of
the ordinary predicate calculus notation and contains essentially

three kinds of constructions:

- 17 -
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designators, which name or denote objects
(or classes of objects) in the data base,
- propositions, which correspond to statements that can be
either true or false in the data base, and

- commands, which initiate and carry out actions.

4.1 Designators

Designators come in two varieties -- individual specifiers
and class specifiers. Individual specifiers correspond to proper
noungs and variables. For example, S10046 is a designator for a
particular sample, OLIV is a designator for a certain mineral
(olivine), and X3 can be a variable denoting any type of object
in the data base. Class specifiers are used to denote classes
of individuals over which qguantification can range. They consist
of the name o .a enumeration function for the class plus
possible arguments. For example, (SEQ TYPECS) is a specification
of the class of type C rocks (i.e., breccias) and (DATALINE
510046 OVERALL OLIV) is a specification of the set of lines of a
table of chemical analyses corresponding to analyses of sample

S100646 for‘the overall concentration of olivine.

4.2 Propositions

Elementary propositions in the MRL are formed from
predicates with designators as arguments. Complex propositions

are formed from these by use of the logical connectives AND, OR,

|



and NOT and by quantificacion. For example, (CONTAIN S10046
OLIV) 1is a proposition formed by substituting designators as
arguments to the predicate CONTAIN, and

(AND (CONTAIN X3 OLIV) (NOT (CONTAIN X3 PLAG)))
is a complex proposition corresponding to the assertion that X3

contains olivine but does not contain plagioclase.

4.3 Commands

Elementary commands consist of the name of a command
operator plus arguments. As for propositions, complex commands
can be constructed using logical connectives and quantification.
For example, TEST is a command operator for testing the truth
valuz of a proposition given as its argument. Thus:

(TEST (CONTAIN S10046 OLIV))
will answer yes or no depending on whether sample S18A46 contains
olivine. Similarly, PRINTOUT is a command operator which prints

out a representation for a designator given as its argument.

4.4 Quantification

An important aspect of the meaning of English sentences that
must be captured in any MRL is the use of quantifiers such as
"every" and "some" . Quantification in the LUNAR MRL is
represented in an elaborated version of the traditional predicate

calculus notation. An example of an expression in this notation

is:



(FOR EVERY X1 / (SEQ SAMPLES) :
(CONTAIN X1 OVERALL SILICON) ; (PRINTOUT X1l)).
This says, "for every object X1 in t.ae set of samples such that

Xl contains silicon, print out (the name of) X1."

In general, an instance of a quantified expression takes the
form:

(FOR <quant> X / <class> : (p X) ; (g X))
where <quant> is a specific quantifier such as EVERY or SOME, X
is the vari#ble of quantification and occurs open in the
expressions (p X) and (g X), <class> is a set over which
quantification is to range, (p X) is a proposition that restricts
the range, and (g X) is the eupression being quantified (which

may be either a proposition or a command).

For the sake of simplifying some examples, I will generalize
the format of the quantification operator so that the restrictiocn
operation implied by the ":" can be repeated any number of times
(including zero if there is no further restriction on the range),
giving rise to forms such as:

(FOR équant) X / <class> ; (q X) )
and

(FOR <quant> X / <class> : (p X) : (r X) ; (q X) ).

When there is no restriction on the range of quantification, this
can also be indicated by using the universally true proposition
T, as in:

(FOR <quant> X / <class> : T ; (q X) ).
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4.5 Specification of the MRL Syntax

A formal BNF specification of the LUNAR MRL is given below:

<exprescsion> <designator> | <proposition> | <command>

<designator> <individual constant> |
<{variable> |
(<function> <expressiond>¥* )

{proposition> = <elementary proposition> |

<quantified proposition>

<elementary proposition> (<propositional operator>

{expression>¥* )

{propositionai operator> <{predicate™ | <logical operator>
<logical operator> = AND | OR | NOT | IF-THEN ...

<{quantified proposition> = (FOR <variable> / <class> ;

{proposition>)

{class> = <elementary class> | <restricted class>

<elementary class:’ <class name> |

(<class function> <expression>* )

<restricted class> <class> : <proposition>

{command> = <elementary command> | <quantified command>

{elementary command> (<command operator> <expression>* )

<quantified command> (FOR <variable> / <class> ; <command>)

In addition to the above BNF constraints, each general
operator (i.e., function, predicate, 1logical operator, class
function, or command operator) will have particular restrictions

on the number and kinds of expressions that it can take as

- 21 -




arguments in order to be meaningful. Each operator also
specifies which of its arguments it takes literally as given, and
which it will evaluate to obtain a referent (see discussion of

Opaque Contexts below).

Predicates, functions, class names, class functions, ccmmand
operators, and individual constants are all domain-dependent
entities which are to be specified for a particular application
domain and defined in terms of procedures. In LUNAR, they are
defined as LISP subroutines. Individual constants are defined by
procedures for producing a reference pointer to the appropriate
internal object in the computer's model of the world; functions
are defined by procedures for producing a reference pointer to
the appropriate value given the values for the arguments; class
names and class functions are defined by procedures that (given
the appropriate values for arguments) can enumerate the members
of their <class one at a time; predicates are defined by
procedures which, given the values of their arguments, determine
a truth value for the corresponding proposition; and command
operators are defined by procedures which, given the values of

their arguments, can carry out the corresponding commands.

I should point out that the definition given here for
classes and commands are not adequate for a general theory of
semantics, but are rather more pragmatic definitions that
facilitate question answering and computer response to commands.

For a general semantic theory, the requirement for semantic
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definition of a class 1is merely a procedure for recognizing a
member, and the semantic definition for a command is a procedure
for recognizing when it has been carried out. That is, to be
§ said to know the meaning of a command does not require the
ability to carry it out, and to know the meaning of a noun does
not require an ability to enumerate all members of its extension.
The distinction between knowing how, and just knowing whether,
marks the difference between pragmatic utility and mere semantic
adequacy. The requirements placed on the definitions of the
classes and commands in the LUNAR system are thus more stringent

than those required for semantic definition alone.

4,6 Procedural/Declarative Duality

The meaning representation language used in LUNAR is
intended to serve both as a procedural specification that can be
executed to compute an answer or carry out a command, and as a
"declarative" representation that can be manipulated as a
symbolic object by a theorem prover or other inference system.
By virtue of the definition of primitive functions and predicates
as LISP functions, the language can be viewed simultaneously as a

1 higher-level programming language and as an extension of the

predicate calculus. This gives rise to two different possible
types of inference for answering questions, corresponding roughly
to Carnap's distinction between intension and extension (Carnap,
1964b). First, because of its definition by means of procedures,

a question such as "Does every sample contain silicon?" can be
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answered extensionally (that 1is, by appeal to the individuals

denoted by the class name “samples") by enumerating the
individual samples and checking whether sodium has been found in
each one. On the other hand, this same guestion could have been

answered intensionally (that is, by consideration of its meaning

alone without reference to the individuals denoted) by means of
the application of inference rules to other (intensional) facts
(such as the assertion "Every sample contains some amount of each
element"). Thus the expressions in the meaning representation
language are capable either of direct execution against the data
base (extensional mode) or manipulation by mechanical inference

algorithms (intensional mode).

In the LUNAR system, the principal mode of inference is
extensional -- that is, the direct evaluation of the formal MRL
expression as a procedure. However, in certain circumstances,
this expression is also manipulated as a symbolic object. Such
cases include the construction of descriptions for discourse
entities to serve as antecedents for anaphoric expressions and
the use of "smart quantifiers" (to be discussed later) for
performiné more efficient quantification. Extensional inference
has a variety of limitations (e.g., it is not possible to prove
assertions about infinite sets in extensional mode), but it is a

very efficient method for a variety of guestion-answering

applications.



4.7 Opaque Contexts

As mentioned above, the general operators in the meaning
representation language are capable of accessing the arguments
they are given either literally or after evaluation. Thus, an
operator such as ABOUT in an expression like:

(ABOUT D70-181 (TRITIUM PRODUCTION) )

(meaning "Document D78-181 discusses tritium production") can
indicate as part of its definition that, in determining the truth
of an assertion, the first argument (D70-181 in this case) is to
be evaluated to determine its referent, while the second argument
(TRITIUM PRODUCTION) is to be taken unevaluated as an input to
the procedure (to be used in some special way as an intensional
object -- in this case, as a specification of a topic that

D76-181 discusses).

This distinction between two types of argument passing is a
relatively standard one in some programming languages, frequently
referred to as call by value versus call by name. In particular,
in the programming language LISP, there are two types of
functions (referred to as LAMBDA and NLAMBDA functions), the
first of which evaluates all of its arguments and the second of
which passes all of its arguments unevaluated to the function
(which then specifies in its body which arguments are to be

evaluated and what to do with the others).

This ability to pass subordinate expressions literally as

intensional objects (to be manipulated in unspecified ways by the
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operator that gets them) avoids several of the antinomies that
have troubled philosophers, such as the non-equivalence of
alternative descriptions of the same object in belief contexts.
Although belief contexts do not occur in LUNAR, similar problems
occur in TRIPSYS, for example, in interpreting the object of the
verb "create", where the argument to the verb is essentially a
description of a desired object, not an object denoted by the

description.

In LUNAR, functions with opaque contexts are also used to
define the basic quantification function FOR as well as general
purpose counting, averaging, and extremal functions: NUMBER,
AVERAGE, MAXIMUM, and MINIMUM. Calls to these functions take the
forms:

(NUMBER X / <class> : (P X) )

"The number of X's in <class> for which (P X) is true."

(AVERAGE X / <class> : (P X) ; (F X) )
"The average of the values of (F X) over the X's in <class>
for which (P X) is true."
(AVERAGE. X / <class> : (P X) )
"The average value of X (a number) over the X's in <class>
for which (P X) is true."
(MAXIMUM X / <class> : (P X) )
"The maximum value of X in the set of X's in <class> for
which (P X) is true."

(MINIMUM X / <class> : (P X) )
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"The minimum value of X in the set of X's in <class> for

which (P X) is true."

The proposition (P X) in each of these cases has to be takea as
an intensional entity rather than a referring expression, since

it must be repeatedly evaluated for different values of X.

Opaque context functions are also defined for forming the
intensional descriptions of sets and the intensional union of
intensionally defined sets:

(SETOF X / <class> : (P X) )

"The set of X's in <class> for which (P X) is true."
(UNION X / <class> : (P X) ; (<setfn> X) )

"The union over the X's in <class> for which (P X) is

true of the sets generated by (<setfn> X)."

4.8 Restricted Class Quantification

One of the major features of the quantifiers in the LUNAR
MRL is the separation of the quantified expression into distinct
structural parts: (1) the the basic class over which
quantification is to range, (2) a set of restrictions on that
class, and (3) the main expression being quantified. There are a
number of advantages of maintaining these distinctions, one of
which is the uniformity of the interpretation procedure over
different kinds of noun phrase determiners that it permits. For
example, the determiners "some" and "every", when translated into

the more customary logical representations, give different main
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connectives for the expression being quantified. That is, "every
man is mortal" becomes (Ax)Man{x)=>Mortal (x) while %“some man is
mortal" becomes (Ex)Man (x)&Mortal(x). With the LUNAR format, the

choice of determiner affects only the choice of quantifier.

Other advantages to this kind of quantifier are the
facilitation of certain kinds of optimization operations on the
MRL expressions, and the generation of appropriate antecedents
for various anaphoric expressions. Recently, Nash-Webber and
Reiter (1977) have pointed out the necessity of making a
distinction between the quantification class and the predicated
expression if an MRL is to be adequate for handling verb phrase

ellipsis and "one"-anaphora.

4.9 Non-Standard Quantifiers

Another advantage of the restricted class quantifier
notation is the uniform treatment of a variety of nnn-standard
quantifiers. For example, LUNAR treats the determiner "the" in a
singular roun phrase as a quantifier, selecting the unique object
that satisfies its restriction (and complaining it the
presupposition that there is a unique such object 1is not
satisfied). This differs from the traditional representation of
definite description by means of the 1iota operator, which
constructs a complex designator for a constituent rather than a
governing quantifier. 1In the traditional notation, the sentence

"The man I see is mortal," would be represented something like:




MORTAL( i(x) : MAN(x) & SEE(I,x)).
In the LUNAR MRL it would be:

(FOR THE X / MAN : (SEE I MAN) ; (MORTAL X)).

Quantifiers such as "many" and "most", whose meaning
requires knowledge of the size of the <class over which
quantification ranges (as well as the size of the class for which
the quantified proposition is true) can be adequately handled by
this notation since the range of quantification is specitically
mentioned. These quantifiers were not implemented in LUNAR,

however.

Among the non-standard quantifiers handled by LUNAR are
numerical determiners (both cardinal and ordinal) and comparative
determiners. Ordinal quantifiers ("the third X such that P") are
handled by a speciai quantifier (ORDINAL n) that can be wused 1in
the <quant> slot of the quantifier form. 1In general this ordinal
quantifier should take another parameter that names the ordering
function to be used, or at least require a preferred ordering
function to be implied by context. The ordering of the members
of the class used by LUNAR is the order of their enumeration by
the enumeration function that defines the class (see Section 5.2

below) .

Numerical quantification and comparative quantification are
handled with a general facility for applying numeric predicates
to a parameter N in the FOR function that counts the number of

successful members of the range of quantification that have been
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found. Examples are (GREATER N <number>), (EQUAL N <number>), or

even (PRIME N) (i.e., N is a prime number).

The interpretation of general numeric predicates as
quantifiers is that if any number N satisfying the predicate can
be found such that N members of the restricted class satisfy the
quantified proposition (or successfully complete a quantified
command), then the quantified proposition 1is true (or a
quantified command is considered completed). In the
implementation, the current value of N 1is tested as each
successful member of the restricted class is found, until either
the count N satisfies the numeric predicate or there are no more

members in the class.

The numeric predicate quantifier can be used directly to
handle comparative determiners such as "at least” and "more
than", and can be used in a negated guantification to handle "at
most" and "fewer than". .The procedure for testing such
quantifiers can return a value as soon as a sufficient number of
the class have been found, without necessarily determining the
exact number of successful members. The numerical determiner
"exactly <n>" is handled in LUNAR by the generalized counting
function NUMBER embedded in an equality statement. (It could
also be handled by a conjunction of "at 1least” and "not more

than", but that would not execute as efficiently.)

The LUNAR MRL also permits a generic quantifier GEN, which

is assigned to noun phrases with plural inflection and no
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determiner. Such noun phrases sometimes behave like universal
quantification and sometimes like existential gquantification. 1In
LUNAR, unless some higher operator indicates that it should be
interpreted otherwise, a generic quantifier is evaluated exactly

like EVERY.
Examples of types of quantification in LUNAR are:

(FOR EVERY X / CLASS : (P X) ; (Q X))

"Every X in CLASS that satisfies P also satisfies Q."
(FOR SOME X / CLASS : (P X) ; (Q X))

"Some X in CLASS that satisfies P also satisfies Q."
(FOR GEN X / CLASS : (P X) ; (Q X))

"A generic X in CLASS that satisfies P will also satisfy Q."
(FOR THE X / CLASS : (P X) ; (Q X))

"The single x in CLASS that satisfies P also satisfies Q."
(FOR (ORDINAL 3) X / CLASS : (P X) : (Q X))

"The third X in CLASS that setisfies P also satisfies Q."
(FOR (GREATER N 3) X / CLASS : (P X) : (Q X))

"More than 3 X's in CLASS that satisfy P also satisfy Q."

(FOR (EQUAL N 3) X / CLASS : (P X) ; (Q X))

"At least 3 X's in CLASS that satisfy P also satisfy Q."
(NOT (FOR (EQUAL N 3) X / CLASS : (P X) ; (Q X)})

"Fewer than 3 X's in CLASS satisfy P and also satisfy Q."
(EQUAL 3 (NUMBER X / CLASS : (P X) : (Q X) ))

"Exactly 3 X's in CLASS satisfy P and also satisfy Q."
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4.10 Functions and Classes

N

Another of the attractive features of the LUNAR MRL is the

way that quantification over classes, single and multiple wvalued

TR

functions, and the attachment of restrictive modifiers are all
handled uniformly, both individually and in combination, by the
quantification operators. Specifically, a noun phrase consisting
of a function applied to arguments is represented in the same way
as a noun phrase whose head is a class over which quantification

is to range. For example "The departure time of £light 557 is

3:00" can be represented as:

(FOR THE X / (DEPARTURE-TIME FLIGHT-557) : T ; (EQUAL X 3:00))

(where T is the universally true proposition, signifying here
that there are no further restrictions on the range of
quantification). This permits exactly the same mechanisms for
handling the various determiners and modifiers to apply to both

functionally determined objects and quantification over classes.

This wuniformity of treatment bzcomes especially significant
i when the function is not single valued and when the <class of

values 1is being quantified over or restricted by additional

modifiers as in:

(FOR EVERY X / (DATALINE S10046 OVERALL SI0O2) : T ; (PRINTOUT X))

and

(FOR THE X / (DATALINE S10046 OVERALL SIO2) :

(REF* X D70-181) ; (PRINTOUT X))

et ot ey



where (DATALINE <sample> (phase> <constituent>) is the function
used in LUNAR to enumerate measurements in its chemical analysis
table and (REF* <table entry> <document>) is a relation hetween a

measurement and the journal article it was reported in.

4.11 Unanticipated Requests

The structure of the meaning representation language, when
coupled with general techniques for semantic interpretation,
enable the user to make very explicit requests with a wide range
of diversity within a natural framework. As a consequence of the
modular composition of MRL expressions, it is possible for the
user to combine the basic predicates and functions of the
retrieval component in ways that were not specifically
anticipated by the system designer. For example, one c¢an make
requests such as "List the minerals", "What are the major
elements?", "How many minerals are there?", etc. Although these
questions might not be sufficiently useful to merit special
effort to handle them, they fall out of the mechanism for
semantic interpretation in a natural way with no additional
effort required. If the system knows how to enumerate the
possible samples for one purpose, it can do so for other purposes
as well. Furthermore, anything that the system can enumerate, it
can count. Thus, the decomposition of the retrieval operaticas
into basic units of quantifications, predicates, and functions
provides a very flexible and powerful facility for expressing

requests.
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5. The Semantics of the Notation

5.1 Procedural Semantics

As mentioned before, the semantic specification of a natural
language requires not only a semantic notation for representing
the meanings of sentences, but also a specification of the
semantics of the notation. As discussed previously, this is done
in LUNAR by relating the notation to procedures that can be
executed. For each of the predicate names that can be used in
specifying semantic representations, LUNAR requires a procedure
or subroutine that will determine the truth of the predicate for
given values of its arguments. Similarly, for each of the
functions that can be wused, there must be a procedure that
computes the value of that function for given wvalues of its
arguments. Likewise, each of the class specifiers for the FOR
function requires a subroutine that enumerates the members of the

class.

The FOR function itself is also defined by a subr~utine, as
are the 1logical operators AND, OR and NOT, the general counting
and averaging functions NUMBER and AVERAGE, and the basic command
functions TEST and PRINTOUT. Thu any well-formed expression in
the language is a composition of functions that have procedural
definitions in the retrieval component and are therefore
themselves well-defined procedures capable of execution on the

data base. In the LUNAR system, the definition of all of these
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procedures is done in LISP, and the notation of the meaning
representation language 1is so chosen that its expressions are
executable LISP programs. These function definitions and the
data base on wnich they operate constitute the retrieval

component of the system.

5.2 Enumeration Functions

One of the engineering features of the LUNAR retrieval
component that makes the quantification operators both efficient
and versatile is the definition of quantification classes by
means of enumeration functions. These are functions that compute
one member of the class at a time and can be callied repeatedly to
obtain successive members. Enumeration functions take an
enumeration index argument which is used as a restart pointer to
keep track of the state of the enumeration. Whenever FOR calls
an enumeration functicn to obtain a nember of a class, it gives
it an enumeration index (initially T), and each time the
enumeration functicn returns a value, it also returns a new value
of the index to be used as a restart pointer to get the next
member. This pointer 1is frequently an inherent part of the
computation and involves negligible overhead to construct. For
example, in enumerati'g integers, the previous integer suffices,
while in enumerating members of an existing list, the pointer to

the rest of the list already exists.




The enumeration function formulation of the classes used in
quantification frees the FOR function from explicit dependence on
the structure of the data base; the values returned by the
enumeration function may be searched for in tables, computed
dynamically, or merely successively accessed from a precomputed
list. Enumeration functions also enable the quantifiers to
operate on potentially infinite classes and on classes of objects
that don't necessarily exist prior to the decision of the
quantifier to enumerate them. For example, in an expression such
as:

(FOR SOME X / INTEGER : (LESSP X 18) ; (PRIME X) )

("some integer 1less than 10 is a prime"), a general enumeration
procedure for integers can be used to construct successive
integers by addition, without having to assume that all the
integers of interest exist in the computer's memory ahead of
time. Thus, the treatment of this kind of quantification fits
naturally within LUNAR's genefal quantification mechanism without

having to be treated as a special case.

In the grammar information system application, an
enumeration function for paths computes representations for paths
through the grammar, so that paths can be talked about even
though there are no explicit entities in the internal grammar
representation that correspond to paths. (See the discussion on
"smart" quantifiers below £for a further discussion of the

problems of quantifying over such entities.)
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An enumeraticn function can indicate termination of the
class in one of two ways: either by returning NIL, indicating
that there are no more members, or by returning & value with a
NIL restart pointer, indicating that the currert value 1is the
last one. This latter can save one extra call to the enumeration
function if the information 1is available at the time the last
value is returned (e.g., for single valued functions). This
avoids what would otherwise be an inefficiency in treating

multiple- and single-valued functions the same way.

In LUNAR, a general purpose enumeration function SEQ can be
used to enumerate any precomputed list, and a similar function
SEQL can be used to enumerate singletons. For example:

(FOR EVERY X1 / (SEQ TYPECS) : T ; (PRINTOUT X1))
is an expressiocn that will printout the sample numbers for all of

the samples that are type C rocks.

Functionally determined objects and classes, as well as
fixed classes, are implemented as enumeration functions, taking
an enumeration index as well as their other arguments and
computing successive members of their class one at a time. In
particular, intensional operators such as AVERAGE, NUMBER, SETOF,
and UNION are defined as enumeration functions and also use
enumeration functions for their class arguments. Thus
quantification over classes, computation of single-valued
functions, and quantification over the values of multiple-valued
functions are all handled uniformly, without special distinctions
having to be made.
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5.3 Quantified Commands

As mentioned earlier, both propositions and commands can be
quantified. Thus one can issue commands such as:

(FOR (EQ N 5) X / SAMPLES : (CONTAIN X SIO2) ; (PRINTOUT X))

("Print out five samples that contain silicon."™). The basic
commands in such expressions are to be iterated according to the
specifications of the quantifier. However, it is possible for
such commands to fail due to a violation of presuppositions or of
necessary conditions. For example, in the above case, there
might not be as many as five samples that contain silicon. 1In
order for the system to be aware of svch cases, each command 1in
the system is defined to return a value that is non-null if the
command has been successfully executed and NIL otherwise. Given
this convention, the FOR operator will automatically return T if
such an iterated command has been successfully completed and NIL

otherwise.

There are other variations of this technique that could be
useful but were not implemented in LUNAR, such as returning
comments when a command failed indicating the kind of failure.
In LUNAR, such commenis were sometimes printed to the user

directly by the procedure that failed, but the system itself had

no opportunity to "see" those comments and take some action of
its own 1in response to them (such as trying some other way to

achieve the same end).
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In LUNAR, interpretations of commands are given directly to
the retrieval component for evaluation, although in a more
intelligent system, as in human~, the decision to carry out a
command once it is understood would not necessarily automatically

follow.

6. Semantic Interpretation

Having now specified the notation in which the meanings of
English sentences are to be represented and specifying the
meanings of expressions in that notation, we are now left with
the specification of the process whereby meanings are assigned to
sentences. This process is referred to as semantic
interpretation, and in LUNAR it 1is driven by a set of formal
semantic interpretation rules. For example, the interpretation
of the sentence "S10846 contains silicon," to which the parser
would assign the syntactic structure:

S DCL

NP NPR S10046

AUX TNS PRESENT

VPV CONTAIN

NP NPR SILICON

is determined by a rule that applies to a sentence wh . the
subject 1is a sample, the object is a chemical element, oxide, or
isotope, and the verb 1is "have" or "contain". This rule
specifies that such a sentence is to be interpreted as an

instance of the schema (CONTAIN x y) where x is to be replaced
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by the interpretation of the subject noun phrase of the sentence

and y is to be replaced by the interpretation of the object.

This information about conditions on possible arquments and
substitutions of subordinate interpretations into "slots" in the
schema is represented in LUNAR by means of the pattern -> action
rule:

[S:CONTAIN
(S.NP (MEM 1 SAMPLE))
(S.V (OR (EQU 1 HAVE)
(EQU 1 CONTAIN))
(S.OBJ (MEM 1 (ELEMENT OXIDE ISOTOPE)))

-> (QUOTE (CONTAIN (# 1 1) (# 3 1))) 1.

The name of the rule is S:CONTAIN. The left-hand side, or
pattern part, of the rule consists of three templates that match
fragments of syntactic structure. The first template requires
that the sentence being interpreted have a subject noun phrase
that is a member of the semantic class SAMPLE; the second
requires that the verb be either "have" or "contain"; and the
third requires a direct object that is either a chemical element,

an oxide or an isotope.

The right-hand side, or action part, of the rule follows the
right arrow and specifies that the interpretation of this node is
to be formed by inserting the interpretations of the subject and
object constituents into the schema (CONTAIN (# 1 1)(# 3 1)),

where the expressions (# m n) mark the "slots" in the schema
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where subordinate interpretations are to be 1inserted. The
detailed structure of such rules is described in Section 6.3.
(Note that the predicate CONTAIN is the name of a procedure 1in
the retrieval component, and it 1is only by the "accident" of
mnemonic design that its name happens to be the same as the

English word "contain" in the sentence that we have interpreted.)

The process of semantic interpretation can conveniently be
thought of as a process that applies to parse trees produced by a
parser to assign semantic interpretations to nodes in the tree.
In LUNAR and the other systems above, except for TRIPSYS, this is
how the interpretations are produced. (In TRIPSYS, they are
produced directly by the parser without an intermediate syntax
tree representation.) The basic interpretation process is a
recursive procedure.that assigns an interpretation to a node of
the tree as a function of its syntactic structure and the

interpretations of its constituents.

The interpretations of complex constituents are thus built
up modularly by a recursive process that determines the
interpretation of a node by inserting the interpretations of
certain constituent nodes 1into open slots in a schema. The
schema to be used is determined by rules that look at a 1limited
portion of the tree. At the bottom level of the tree (i.e., the
leaves of the tree), the interpretation schemata are 1literal
representations without open slots, specifying the appropriate
elementary interpretations of basic atomic constituents (e.g.,
proper names).
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In LUNAR, the semantic interpretation procedure is
implemented in such a way that the interpretation of nodes can be
initiated in any order. If the interpretation of a node requires
the interpretation of a constituent that has not yet been
interpreted, then the interpretation of that conctituent is
performed before that of the higher node is completed. Thus, it
is possible to perform the entire semantic interpretation by
calling for the interpretation ol the top node (the sentence as a
whole). This is the normal mode in which the interpreter is
operated in LUNAR. I will discuss later (Sections 11.3 and 11.4)
some experiments in which this mechanism is used for "bottom-up"

interpretation.

6.1 Complications Due to Quantifiers

In the above example, the interpretation of the sentence is
obtained by inserting the ~interpretations of the proper noun
phrases "S10046" and "silicon" (in LUNAR these are "S10646" and
"SI102", respectively) into the open slots of the right-hand side
schema to ootain:

(CONTAIN S10046 SIO2).

When faced with the possibility of a quantified noun phrase,
however, the problem becomes somewhat more complex. If the
initial sentence were "Every sample contains silicon," then one

would like to produce the interpretation:

(FOR EVERY X / SAMPLE ; (CONTAIN X SIO2)).




That is, one would 1like to <create a variable to fill the
"container" slot of the schema for the main verb, and then
generate a quantifier to govern that variable to be attached
above the predicate CONTAIN. As we shall see, the LUNAR semantic
interpretation system specifically provides for the generation

and appropriate attachment of such quantifiers.

6.2 Problems with an Alternative Approach

Because of the complications discussed above, one might ask
whether there is some other way to handle quantification without
generating quantifiers that are extracted from their noun phrase
and attached as dominant operators governing the clause in which
the original noun phrase was embedded. One might, instead,
attempt to interpreé the quantified noun phrase as some kind of a
set that the verb of the clause takes as its argument, and
require the definition of the verb to include the iteration of
its basic predicate over the members of the class. For example,
one might want a representation for the above example something
like:

(CONTAIN (SET X / SAMPLE : T) SI02)
with the predicate CONTAIN defined to check whether its first
argument is a set and if so, check each of the members of that

set.

however, if one were to tzke this approach, some way would

be needed to distinguish giving CONTAIN a set argument over which
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it should do universal quantification from one in which it should
do existential quantification. One would similarly have to be
able to give it arguments for the wvarious non-standard
quantifiers discussed above, such as numerical quantifiers and
quantifiers 1like "most®™. Moreover, the same thing would have to
be done separately for the second argument to CONTAIN as well as
the first (i.e., the chemical element as well as the sample), and
one would have to make sure that all combinations of quantifiers
in the two argument positions worked correctly. Essentially one
would have to duplicate the entire quantificational mechanism
discussed above as part of the defining procedure for the meaning
of the predicate CONTAIN. Moreover, one would then have to
duplicate this code separately for each other predicate and
command in the system. Even if one managed to share most of the
code by packaging it as subroutines, this is still an inelegant

way of handling the problem.

Even if one went to the trouble 3just outlined, there are
still 1logical inadequacies, since there 1is no way with the
proposed method to specify the differences 1in meaning that
correspond to the different relative scopes of two quantifiers
(e.g., "Every sample contains come element" vs. "There 1is some
element that every sample contains"). Likewise, there is no
mechanism to indicate the relative scopes of quantifiers and
sentential operators such as negation ("Not every sample contains
silicon" vs. "Every sample contains no silicon"). It appears,
therefore, that treating quantifiers effectively as higher

operators is essential to correct interpretation in general.
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6.3 The Structure of Semantic Rules

As discussed above, in determining the meaning of a
construction, two types of information are used: syntactic
information about sentence construction, and seiantic information
about constituents. For example, in interpreting the above
example, it is both the syntactic structure of the sentence
(subject = S10046; verb = "contain"; object = silicon) plus the
semantic facts that S10846 is a sample and silicon is a chemical
element that determine the interpretation. Syntactic information
about a construction is tested by matching tree fragments such as

those indicated below against the mode being interpreted:

S.NP = S NP (1) -- (subject of a sentence)
S.V = § VP V (1) =-- (main verb of a sentence)
S.0OBJ = S VP NP (1) -- (direct object of a sentence)
S.PP = S VP PP PREP (1) -- (preposition and object
NP (2) modifying a verb phrase)
NP.ADJ = NP ADJ (2) -- (adjective modifying a noun phrase)

Fragment S.NP matches a sentence if it has a subject and also
associa.es the number 1 with the subject noun phrase. S.PP
matches a sentence that contains a prepositional phrase modifying
the verb phrase and associates the numbers 1 and 2 with the
preposition and its object, respectively. The numbered nodes can
be referred to in the 1left-hand sides c¢f rules for checking

semantic conditions, and they are used in the right-hand sides
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for specifying the interpretation of the construction. These
tree structure fragments can be named mnemonically as above for

readability.

The basic element of the left-hand side of a rule is a
template consisting of tree fragments plus additional semantic
conditions on the numbered nodes of the fragment. For example,
the template (S.NP (MEM 1 SAMPLE)) matches a sentence if its
subject is semantically marked as a sample. The pattern part of
a rule consists of a sequence of templates, and the action of the
rule specifies how the interpretation of the sentence is to be
constructed from the interpretations of the nodes that match the

numbered nodes of the templates.

Occasionally, some of the elements that are required to
construct an interpretation may be found in one of several
alternative places in a construction. For example, the
constituent to be measured in an analysis can occur either as a
prenominal adjective ("a silicon analysis") or as a post-nominal
prepositional phrase ("an analysis of silicon"). To handle this
case, basic templates corresponding to tha alternative ways the
necessary element can be found can be grouped together with an OR
operator to form a disjunctive template that is satisfied if any
of its disjunct templates are. For example:

(OR (NP.ADJ (MEM 2 ELEMENT))
(NP.PP (AND (EQU 1 OF)

(MEM 2 ELEMENT))).
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Also occasionally, two rules will be distinguished by the
fact that one applies when a given constituent is present and the
other will require it to be absent. In order to write the second
rule so that it will not match in circumstarces where it 1is not
intended, a basic template can be embedded in a negation operator
NOT to produce a negated template that 1is satisfied if its
embedded template fails to match and is not satisfied when its
embedded template succeeds. For example:

(NOT (NP.ADJ (EQU 2 MODAL))).

In general, the 1left-hand side of a rule consists of a

sequence of templates (basic, disjunctive, or negated).

6.3.1 Right-hand Sides

The right-hand sides (or actions) of semantic rules are
schemata into which the interpretations of embedded constituents
are inserted before the resulting form is evaluated to give a
semantic interpretation. The places, or "slots", in the
right-hand sides where subordinate interpretations are to be
inserted are indicated by expressions calle' REFs, which begin
with the atcin # and contain one or two numbers and an optional
"TYPEFLAG." The numbers indicate the node in the tree whose
interpretation is to be inserted by naming first the sequence
number of a template of the rule, and then the number of the
corresponding node in the tree fragment of that template. Thus

the reference (# 2 1) represents the interpretation of the node
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that matches node 1 of the 2nd template of the rule. In
addition, the single number 6 can also be used to reference the

current node, as in (¥ € TYPEFLAG).

et 1 | L T

The TYPEFLAG el:¢ment, if present, indicates how the
subordinate necde 1is to be interpreted. For example, in LUNAR
there is a distinction between interpreting a node normally and
interpreting it as a topic description. Thus (¢ @ TOPIC)
represents the interpretation of the current node as a topic
description. There are a variety of types of interpretation used
for various purposes in the rules of the system. The absence of
a specific TYPEFLAG in a REF indicates that the interpretation is
to be done in the normal mode for the ¢type of node that it

matches.

6.3.2 Right-hand Side Evaluation

In many cases, the semantic interpretation to be attached to
a node can be constructed by merely inserting the appropriate
constituent interpretations into the open slots in a fixed
schema. However, occasionally, more than this is required and
some procedure needs to be executed to modify or transform the
resulting instantiated schema. To provide for this, the semantic
interpreter treats right-hand sides of rules as expressions to te
evaluated to determine the appropriate interpretation. For rules
in which the desired final form can be given literally, the

right-hand side schema is embedded in the operator QUOTE which
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simply returns its argument unchanged. This is the case in the
example above. In special cases, right-hand side operators can
do fairly complex things, such as searching a discourse directory
for antecedents for anaphoric expressions and computing
intensional unions of sets. In the wusval case, however, the
operator is either QUOTE or one of the two operators PRED and

QUANT that handle quantifier passing (discussed below).

6.4 Relationship of Rules to Syntax

In many programm_ng languages and some attempts to specify
natural language semantics, semantic rules are paired directly
with syntactic phrase structure rules so that a single compact
pairing specifies both the syntactic structure of a constituent
and its interpretation. This type of specification is clean and
straightforward and works well for artificial languages that can
be defined by context-free or almost context-free grammars. For
interpreting natural language sentences, whose structure is less
isomorphic to the kind of logical meaning representation that one
would like to derive, it 1s 1less convenient, although not
imposcible. Specifically, with the more complex grammars for
natural language -- e.g., ATN's and transformational grammars,
the simple notic.: of a syntactic rule with which to pair a
semantic rule becomes less clear. Consequent.y, the rules in the
LUNAR system are not pair~=d with the syntactic rules, nor are
they constrained to look only at the immediate constituents of a

phrase. 1In general they can look arbitrarily far down into the
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phrase they are interpreting, picking up interpretations of
subordinate constituents at any level and 1looking at various
syntactic aspects of the structure they are interpreting, as well
as the semantic interpretations of cuuctituents. The rules are
invoked not by virtue of applying a given syntactic rule, but by

means of rule indexing strategies described below.

6.5 Organization of the Semantic Interpreter

The overall operation of the semantic interpreter is as
follows: A top level routine calls the recursive function INTERP
locking at the top level of the parse tree. Thereafter, INTERP
attempts to match semantic rules against the specified node of
the tree, and the right-hand sides of matching rules specify the
interpretation to be given to the node. The possibility of
semantic ambiguity is recognized, and therefore the routine
INTERP produces a 1list of possible interpretations (usually a
singleton, however). Each interpretation consists of two parts:
a node interpretation (called the SEM of the node), and a
quantifier "collar" (called the QUANT of the node). The QUANT is
a schema for higher operators (such as quantification) that is to
dominate any interpretation in which the SEM 1is inserted (used
for quantifier passing -- see Section 6.7 belc.j. Thus the
result of a call to INTERP for a given node P 1is a 1list of
SEM-QUANT pairs, one for each possible interpretation of the

node.
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6.5.1 Context-Dependent Interpretation

The function INTERP takes two arguments -- the construction
to be interpreted, and a TYPEFLAG that indicates how to interpret
it. The TYPEFLAG mechanism is intended to ailow a constituent to
be interpreted differently depending on the higher-level
structure within which it is embedded. The TYPEFLAG permits a
higher 1level schema to pass down information to indicate how it
wants a constituent interpreted. For example, some verbs can
specify that they want a noun phrase interpreted as a set rather
than as a quantification over individuals. The TYPEFLAG
mechanism is also used to control the successive phases of

interpretation of noun phrases and clauses (discussed below).

When interpreting a node, INTERP first calls a function HEAD
to determine the head of the construction and then calls a
function RULES to determine the list of semantic rules to be used
(which depends, in general, on the type of node, its head word,
and the value of TYPEFLAG). It then dispatches control to a
routine MATCHER to try to match the rules. If no interpretations
are found, then, depending on the TYPEFLAG and various mode
settings, INTERP either returns a default interpretation T, goes
into a break with a comment that the node is uninterpretable
(pernitting a systems programmer to debug rules), or returns NIL

indicating that the node has no interpretations for the indicated

TYPEFLAG.
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6.5.2 Phased Interpretation

In general, there are two types of constituents in a
sentence that receive interpretations -- clauses and noun
phrases. The former receive interpretations that are usually
predications or commands, while the latter are usually
designators. The interpretation of these two different kinds of
phrase are slightly different, but also remarkably similar. In
each case there is a governing "head" word; the verb in the case
of a clause, and the head noun in the case of the noun phrase.
The interpretation of a phrase is principally determined by the
head word (noun or verb) of the construction. However, there are
also other parts of a construction that determine aspects of its
interpretation independent of the head word. These in turn break
down into two further <classes: (1) modifying phrases (which
themselves have dominating head words) that augment or alter
meaning of the head, and (2) function words that determine
governing operators of the interpretation that are independent of
the head word and its modifiers. 1In the case of clauses, these
latter include the interpretation of tense and aspect and various
qualifying operators such as negative particles. In the case of
noun phrases, these include the interpretation of articles and

quantifiers and the inflected case and number of the head noun.

As a consequence of these distinctions, the semantic
interpretation of a construction generally consists of three

kinds of operations: determining any governing operators that are
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independent of the head word, determining the basic
interpretation of the head, and interpreting any modifiers that
may be present. In LUNAR, these three kinds of interpretation
are governed by three different classes of rules that operate in
three phases. The phases are controlled by the rules themselves
by using multiple calls to the interpreter with different

TYPEFLAGS.

The above description is not the only way such phasing could
be achieved. For example, it would be possible to gain the same
phasing of interpretation by virtue of the structures assigned to
the input by the parser (see Section 11.2) or by embedding the
phasing in the control structure of the interpreter. In the
original flight schedules and grammar information
implementations, this phasing was embedded in the control
structure of the interpreter. Placing the phasing under the
control of the rules themselves in LUNAR provided more
flexibility. In TRIPSYS, the -equivalent of such phasing is
in jJrated, along with the semantic interpretation, into the

parsing process.

In general, the interpretation of a construction is
initially called for with  TYPEFLAG  NIL. This first
intorpretation may in turn involve successive calls for
interpretation of the same node with other TYPEFLAGs to obtain
subsequent phases of interpretation. For example, clauses are

initially interpreted with TYPEFLAG NIL, and the rules invoked
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are a general set of rules called PRERULES that look for negative
particles, tense marking, conjunctions etc. to determine any
governing operators that should surround the interpretation of
the verb. Whichever of these rules matches will then call for
another interpretation of the same construction with an
appropriate TYPEFLAG. The basic interpretation of the verb is
done by a call with TYPEFLAG SRULES, which invokes a set of rules
stored on the property list of the verb (or reachable from the
entry for that verb by chaining up a generalization hierarchy).
For example, in interpreting the sentence "S10046 doesn't contain
silicon", the initial PRERULE PR-NEG matches with a right-hand
side:
(PRED (NOT (# © SRULES))).

The SRULE S:CONTAIN discussed above then matches, producing
eventually (CONTAIN S10¢46 SIO2), which is then embedded in the
PR-NEG schema to produce the final interpretation:

(NOT (CONTAIN 510046 SIO2)).

Ordinary noun phrases are usually interpreted by an initial
phase that interprets the determiner and number, a second phase
that interprets the head noun and any arguments that it may take
(i.e., as a function), and a third phase that interprets other
adjectival and prepositional phrase modifiers and relative

clauses.
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6.5.3 Proper Nouns and Mass Terms

In addition to the rules discussed above for ordinary noun
phrases, there are two special classes of noun phrase -- proper
nouns and mass terms -- that have their own rules. Proper nouns
are the direct names of individuals in the data base. Their
identifiers in the data base, which are not necessarily identical
to their normal English orthography, are indicated 1in the
dictionary entry for the English form. Mass terms are the names
of substances 1like silicon and hydrogen. Proper nouns are
represented in the LUNAR syntactic representations as special
cases of noun phrases by a rule equivalent to NP -> NPR, while
mass terms are represented as ordinary noun phrases with

determiner NIL and number SG.

In general, the interpretation of mass terms requires a
special treatment of quantifiers, similar to but different from
the ordinary quantifiers that deal with count nouns (e.g., "some
silicon" means an amount of stuff, while "some sample" means an
individual sample). In the LUNAR system, however, mass terms are
used only in a few specialized senses in which they are almost

equivalent to proper nouns naming a substance.

6.6 Organization of Rules

As mentioned above, the semantic rules for interpreting
sentences are usually governed by the verb of the sentence. That

is, out of the entire set of semantic rules, only a relatively
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small number of them can possibly apply to a given sentence
because of the verb mentioned in the rule, Similarly, the rules
that interpret noun phrases are governed by the head noun of the
noun phrase. For this reason, most semantic rules in LUNAR are
indexed according to the heads of the ccnstructions to which they
could apply, and recorded in the dictionary entry for the head
words. Specifically, associated with each verb is a set of
"SRULES" for interpreting that verb in various contexts, and
associated with each noun is a set of "NRULES" for interpreting
various occurrences of that noun. In addition, associated with
each noun are a set of "RRULES" for interpreting various
restrictive modifiers that may be applied to that noun. Each
rule essentially characterizes a syntactic/semantic environment
in which a word can occur, and specifies its interpretation in
that environment. The templates of a rule thus describe the
necessary and sufficient constituents and semantic restrictions

for a word to be meaningful.

In addition to indexing rules directly in the dictionary
entry for a given word, certain rules that apply generally to a
class of words are indexed in an inheritance hierarchy
(frequently called an "is-a" hierarchy in semantic network
notations) so that they can be recorded once at the appropriate
level of generality. Specifically, each word in the dictionary
has a property called MARKERS which contains a list of classes of
which it is a member (or subclass) -- i.e., <classes with which

this word has an "is-a" relationship. Each of these classes also
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has a dictionary entry that may contain SRULES, NRULES, and
RRULES. The set of rules used by the interpreter for any given
phrase is obtained by scanning up these chains of inheritance and
gathering up the rules that are found. These accesses are quite
shallow in LUNAR, but would be used more heavily 1in a less

limited topic domain.

In situations in which the set of rules does not dep«nd on
the head of the construction, the rules to be used are taken from
a global list determined by the vaiue of TYPEFLAG and the type of
the constituent being interpreted. For example, in interpreting
the determiner structure of a noun phrase, a global list of

DRULES is used.

6.6.1 Rule Trees

Whether indexed by the head words of constructions or taken
from global 1lists, rules to be tried are organized into a tree
structure that can make rule matching conditional on the success
or failure of previous rules. A rule tree specifies the order in
which rules are to be tried and after each rule indicates whether
a different tree of rules is to be tried next, depending on the
success or failure of previous rules. The format for a rule tree
is basically a list of rules (or rule groups -- see Multiple
Matches below) in the order they are to be tried. However, after
any given element in this list, a new rule tree can be inserted

to be used if any of the rules preceding it have succeeded. If
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no rules preceding it have succeeded, then the inserted tree is
skipped and rules continue to be taken from the rules that follow
it in the list. For example, the tree (R1 R2 (R4 R5) R3 R4 R5)
indicates that Rl and R2 are to be tried in that order and if
either of them succeed, then subsequent rules to be tried are R4
and RS. If neither R1 nor R2 succeed, then the remaining list
R3, R4, R5 is to be tried next. This example illustrates how a
rule tree can be used to skip around rules that are to be omitted

if previous rules have succeeded.

The most usual cases of rule trees in LUNAR are simpie lists
(i.e., no branching in the tree), and 1lists of rules with
inserted empty trees (i.e., the empty 1list NIL) serving as
"barriers" to stop the attempted matching of rules once a

successful rule has been found.

6.6.2 Multiple Matches

Since the templates of a rule may match a node in several
ways, and since several rules may simultaneously match a single
node, it is necessary to indicate how the interpretation of a
node 1is to be constructed in such a case. To provide this
information, the lists of rules at each level of a rule tree can
be organized into groups, with each group indicating how (or
whether) simultaneous iwmatches by different rules are to be
combined. The format of a rule group 1s a list of rules (or

other groups) preceded by an operator specifying the mode for
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combining simultaneous matches. Outside the scopes of rule
groups, the mode to be used 1is specified by a default value
determined by TYPEFLAG and the type of node being interpreted.
Possible modes are AND (which combines multiple matches with an
AND -- 1i.e., treats multiple matches as findina different parts
of a single conjoined meaning), OR (which combines multiple
matches with an OR), SPLIT (which keeps multiple matches separate
as semantic ambiguities), and FAIL (which prohibits multiple

matches -- i.e., complains if it finds any).

To illustrate the behavior of rule groups in rule trees, a
rule 1list of the form (A B NIL C (OR D E)) with default mode AND
indicates that if either of the rules A or B is successful, then
no further matches are tried (NIL is a barrier); otherwise, rules
C, D, and E are tried. 1If both D and E match, then the results
are OR'ed together, and if C matches together with D or E or

both, it is AND'ed to the results of the OR group.

The modes (AND, OR, SPLIT, and FAIL) also apply to multiple
matches of a single rule. A rule may either specify the mode for
multiple matches as its first element prior to the 1list of
templates, or else it will be governed by the rule group or

default mode setting at the time it 1s matched.

6.7 The Generation of Quantifiers

As mentioned above, the LUNAR interpretation system

specifically provides for the generation and appropriate
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attachment of quantifiers governing the interpretations it
produces. Central to this capability 1is the division of the
interpretation of a constituent into two parts: a SEM that is to
be inserted into the appropriate slo% of the schema for some
higher constituent, and a QUANT that serves as a "collar" of
higher operators that is to be passed up to some higher level of
the tree (around which the collar will be "worn"). A quantifier
to be attached to some higher constituent is represented as a
schema, which itself contains a slot into which the
interpretation of that higher constituent is to be inserted.
This slot (the "hole" in the collar) is indicated by a marker

DLT.

In the unquantified example sentence considered in Section
6.1 above, the SEM of the subject noun phrase is simply 5108046,
and the QUANT is the "empty" collar DLT. The quantifier schema
an the second example wculd be represented as:

(FOR EVERY X / SAMPLE : T ; DLT).

6.7.1 Steps in Interpretation

The general procedure for interpreting a construction is:

a) Match an interpretation rule against the construction,
subject to the control of the rule tree.
b) If it matches, then determine from the right-hand side of

the rule the set of constituent nodes that need to be

interpreted.




c) Call for the interpretation of all of the constituents
required, associate their SEMs with the slots in the schema
that they are to fill, and gather up all of the QUANTs that
are denerated by those interpretations. Call a functicn
SORTQUANT to determine the order in which those quantifiers
(if there are several) should be nested.

d) Depending on an operator in the right hand side of rule,
either attach the quantifiers so generated around the
outside of the current schema, or pass them further up the
tree as the QUANT of the resulting interpretation.

e) If multiple matches are to be combined with an AND or OR, it
is their SEMs that are so combined. Their QUANTs are nested

one inside the other to produce the QUANT of the result.

6.7.2 Quantifier Passing Operators

There are three principal operators for use in the
right-hand sides of rules to determine the behavior of quantifier
passing up the tree. These are the operatands PRED, QUOTE, and
QUANT. The first 1indicates that tne schema it contains is a
predication that will accept quantifiers from below; it causes
any quantifiers that arise from constituent interpretations to be
attached around the current schema to become part of the
resulting SEM. The QUANT associated with such an interprecation
will be the empty QUANT DLT. The operator QUAMT, on the other
hand, indicates that the schema it contains 1is itself a

quantifier schema, and that the resuvlt of its instantiation is to
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be passed up the tree (together with other quantifiers that may
have resulted from constituent interpretations) as the QUANT of
the interpretation. The SEM associated with such an
interpretation is the variable name that is being governed by the
quantifier. The operator QUOTE is used around a schema that is
transparent to quantifier passing, so that any quantifiers that
accumulate from constituent interpretations are simply aggregated
together and passed on up the tree as the QUANT of the
interpretation. The SEM of such an interpretation is simply the

instantiated schema inside the QUOTE.

In the LUNAR implementation, a function SEMSUB, which
substitutes the SEMs of lower interpretations into the right-hand
sides of rules, maintains a variable QUANT to accumulate the
nesting of quantifiers returned from the lower interpretations.
Then, after making the substitutions, the right-hand side of the
rule is evaluated to determine the SEM-QUANT pair to be returned.
The result of the evaluation is the desired SEM of the pair, and
the wvalue of QUANT (which may have been changed as a side effect
of the evaluation) is the QUANT of the pair. The operators PRED
and QUANT in the right-hand sides of rules manipulate the

variable QUANT to grab and insert quantifiers.
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7. Problems of TInterpretation

7.1 The Order of yuantifier Nesting

In the general quantification schema:

(FOR <quant> X / <class> : (p X) ; (q X))
both the expre:sions (p X) and (g X) can themselves be quantified
expressions. Sentences .:ontaining several quantified noun
phrases result in expressions with a nesting of guantifiers
dominating the interpretation of the main clause. For example,
the sentence "Every samplz contains some element" has a
representa*ion:

(FOR EVIRY X / SAMPLE ;
(FOR SOME Y / ELEMENT ;

(CONTAIN X Y) ) ).

Alternative interpretations of a sentence c¢r responding to
different orderings of the quantif.ers correspond to different

relative nestings of the quantifier opersz.ions. For example, the

above sentence has an unlikely interpretation in which there is a
particular element that 1is contained in every sample. The
representation of this interpretation is:
(FOR SOME Y / ELEMENT ;
(FOR EVERY X / SAMPLE ;
(CONTAIN X Y) ) ).
Thus, 1in interpreting a sentence, it is necessary to decide the
appropriate order of nesting of quantifiers to be used. In

general, this orderi: 1is the left-to-right order of occurrence
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of the quantifiers in the sentence, but this is not universally
so (for example, when a function is applied to a quantified noun
phrase - see Functional Nesting below). In situations where the
order of quantifiers is not otherwise cdetermined, LUNAR assumes

the left-to-right order of occurrence in the sentence.

7.2 1Interaction of Negations with Quantifiers

The construction of an interpretation system that will
handle sentences containing single instances of a quantification
or simple negation without quantification is not difficult. What
is difficult is to make it handle correctly sentences containing
arbitrary combinations of quantifiers and negatives. The
interpretation mechanism of LUNAR haiadles such constructions
fairly well. Consider the sentence "Every sample does not
contain silicon". This sentence is potentially ambiguous between
two interpretations:

(NOT (FOR EVERY X / SAMPLE ; (CONTAIN X SI02)))
and

(FOR EVERY X / SAMPLE ; (NOT (CONTAIN X SI02))).

The difference lies in the relative scopes of the quantifier and

the negative.

One interpretation of the above sentence is handled in LUNAR
by the interaction of the rules already presented. The
interpretation of the PRERULE PR-NEG, discussed in Section 6.5.2,

has the right-hand side (PRED (NOT (# © SRULES))), whose
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governing operator indicates that it grabs quantifiers from
below. The interpretation of the noun phrase "every sample”
produces the quantifier "collar":

(FOR EVERY X / SAMPLE : T ; DLT)
which 1is passed up as the QUANT together with the SEM X. The
right-hand side of S:CONTAIN is embedded in the operator QUOTE,
which is transparent to quantifiers, producing the SEM (CONTAIN X
5102) and passing on the same QUANT. The top level rule PR-NEG
now executes its instantiated right-hand side:

(PRED (NOT (CONTAIN X S102)))
which grabs the quantifier to produce the interpretation:

(FOR EVERY X / SAMPLE : T ; (NOT (CONTAIN X SIO2))).

The alternative interpretation of the above sentence can be
obtained by an alternative PRERULE for sentential negatives whose
right-hand side is:

(BUILDQ (NOT #) (PRED (# ©® SRULES)))
where BUILDQ 1is an operator whose first argument is a literal
schema into which it inserts the values of its remaining
arguments. In this case, the PRED expression produces:

(FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02))
and the BUILDQ produces:

(NOT (FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02))).

If these two negative rules both existed in the list
PRERULES, then the LUNAR interpreter when interpreting a negative

sentence would find them both and would produce both
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interpretations. In the case where no quantifier is returned by
the subordinate SRULES interpretation, then both rules would
produce the same interpretation and the duplicate could be
eliminated. 1In the case where a quantifier is returned, then the
two interpretations would be different and a dgenuine ambiguity
would have been found, resulting in a request by the system to
the wuser to indicate which of the ¢two interpretations he

intended.

However, if one decides to legislate that only one of the
two possible scope choices should be perceived by the system,
then only the corresponding rule for negation should be included
in the PRERULES list. This is the choice that was taken in the
demonstration LUNAR system. Since the interpretation of the
negative operator outside the scope of the quantifier can be
unambiguously expressed using locutions such as "Not every sample
contains silicon", LUNAR's rules treat sentential negation as
falling inside any quantifiers (as expressed by the PR-NEG rule
discussed previously). Rules for interpreting determiners such
as "not every" can -easily be written to produce quantifier
expressions such as:

(NOT (FOR EVERY X / <class> ; DLT))
to give interpretations in which the negative operator is

outermost.
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7.3 Functional Nesting and Quantifier Reversal

As previously mentioned, an interesting example of
quantifier nesting occurs when an argqument to a function is
quantified. As an example, consider the flight schedules
request, "List the departure times from Boston of every American
Airlines flight that goes from Boston to Chicago." This sentence
has a bizarre interpretation in which there is one time at which
every American Airlines flight from Beston to Chicago departs.
However, the normal interpretation requires taking the
subordinate quantifier "every flight" and raising it above the
quantifier of the higher noun phrase "the departure time". Such
nesting of quantifiers is required when the range of
quantification of one of them (in this case, the departure times)
contains a variable governed by the other (in this case, the

flights).

In the logical representation 'of the meaning of such
sentences, the higher quantifier must be the one that governs the
variable on which the other depends. This logical dependency is
exactly the reversal of the "syntactic dependency" in the parse
tree, where the argument to the function 1is contained within
(i.e., "dependent" on) the phrase the function heads. The LUNAR
system facility for interpreting such constructions automatically
gets the preferred interpretation, since the quantifiers from
subordinate constituents are accumulated and nested before the
quantifier for a given noun phrase 1is inserted into the
quantifier collar.
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To illustrate the process in detail, consider the
interpretation of the above example. In the processing of the
constituents of the noun phrase whose head is "departure time",
the quantifier:

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; DLT)
is returned from the interpretation of the "flight" noun phrase
(which gets the SEM X2). The temporary QUANT accumulator in the
function SEMSUB (discussed 1in Section 6.7), at this point
contains the single "empty" quantifier collar DLT. This is now
modified by substituting the returned quantifier for the DLT,
resulting in the QUANT accumulator now containing the returned

quantifier:

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; DLT)

(with its DLT now marking the "hole" in the collar).

When all of the subordinate constituents have been
interpreted, and their SEM's have been inserted into the
right-hand side schema of the d-rule (for the "“departure time"
noun phrase), the resulting instantiated schema will be:

(QUANT (FOR THE X1 / (DTIME X2 BOSTON) : T ; DLT) ).

This is then evaluated, again resulting in the DLT in the
temporary QUANT accumulator being replaced with this new
quantifier (thus inserting the definite quantification THE inside
the scope of the universal quantifier EVERY that is already
there). The result of this interpretation is to return the

SEM-QUANT pair consisting of the SEM X1 and the QUANT:
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(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ;

(FOR THE X1 / (DTIME X2 BOSTON) : T ; DLT )).

The right-hand side for the next higher rule (the one that
interprets the command "list x") contains a PRED operator, so
that when its instantiated schema:

(PRED (PRINTOUT X1))
is executed, it will grab the quantifier collar from below to
produce the interpretation:

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ;

(FOR THE X1 / (DTIME X2 BOSTON) : T ;

(PRINTOUT X1) )).

7.4 Relative Clauses

One of the features o0f the LUNAR system that makes it
relatively powerful 1in the range of questions it can handle is
its general treatment of relative clause modifiers. This gives
it a natural ability to handle many questions that would be
awkward or impossible to pose to many data management systems.
Relative <clauses permit arbitrary predicate restrictions to be
imposed on the range of quantification of some iterative search.
The way in which relative clauses are interpreted is quite simple
within LUNAR's general semantic interpretation framework. It is

dore by a general RRULE R:REL, which is implicitly included 1in

the RRULES for any noun phrase.




The rule R:REL will match a noun phrase if it finds a
relative clause structure modifying the phrase. On each such
relative clause, it will execute a function RELTAG that will find
the node in the relative clause corresponding to the relative
pronoun ("which" or "that"), .nd will mark this found node with
the same variable X that is being used for the noun phrase that
the relative clause modifies. This pronoun will then behave as
if it had already been interpreted and assigned that variable as
its SEM. The semantic interpreter will then be called on the
relative clause node, Jjust 1like any other sentence being
interpreted, and the result will be a predicate with a free
occurrence of the variable X. This resulting predicate is then
taken, together with any other RRULE predicates obtained from
adjectival and prepositional phrase modifiers, to form the
restriction on the range of quantification of the modified noun

phrase.

One consequence of a relative clause being interpreted as a
subordinate S node (in fact, a consequence of any subordinate S
node interpretation) 1is that, since the PRERULES wused in
interpreting the subordinate S node all have PRED operators in
their right-hand sides, any quantifiers produced by noun phrases
inside the relative clause will be grabbed by the relative clause
itself and not passed up to the main clause. This rules out
interpretations of sentences like "List the samples that contain

every major element" in anomalous ways such as:




(FOR EVERY X / MAJORELT : T ;
(FOR EVERY Y / SAMPLE : (CONTAIN Y X) ;
(PRINTOUT Y) ))
(i.e., "For every major element list the samples that contain
it") instead of the correct:

(FOR EVERY Y / SAMPLE :

(FOR EVERY X / MAJORELT : T ; (CONTAIN Y X)) :
(PRINTOUT Y) )
Except in certain opaque context situations, this seems to be the
preferred interpretation. As in other cases, however, although
LUNAR's interpretation system is capable of producing alternative
interpretations for some other criteria to choose between, the
demonstration prototype instead uses rules that determine just

those interpretations that seem to be most likely in its domain.

7.5 Other Types of Modifiers

In addition to relative clauses, there are other kinds of
constructions in English that function as predicates to restrict
the range of quantification. These include most adjectives and
prepositional phrases. They are interpreted by RRULES that match
the appropriate structures in a noun phrase and produce a
predicate with free variable X (which will be instantiated with
the variable of quantification for the noun phrase being

interpreted). I will call such modifiers predicators since they

function as predicates to restrict the range of quantification.

Examples of predicators are modifiers like "recent" and "about
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olivine twinning" in phrases like "recent articles about olivine
twinning". The interpretation of this phrase would produce the
quantifier:

(FOR GEN X / DOCUMENT

(AND (RECENT X) (ABOUT X (OLIVINE TWINNING))) ; DLT ).

Note that not all adjectives and prepositional phrases are
interpreted as just described. Many fill special roles
determined by the head noun, essentially serving as arguments to
a function. For example, in a noun phrase such as "the silicon
concentration in S18646", the adjective "silicon" is specifying
the value of one of the arguments to the function
"concentration", rather than serving as an independent predicate
that the concentration must satisfy. (That is, this phrase is not
equivalent to "the concentration in S10046 which is silicon",
which doesn't make sense). Similarly, the prepositional phrase
"in S10046" is filling the same kind of argument role, and is not
an independent modifier. I will call this class of modifiers

role fillers.

In some cases, there are modifiers that could either be
treated as restricting predicates or as filling argument roles in
a function, dependirg on the enumeration function that is being
used to represent the meaning of the head noun. For example, a
modifier 1like "to Chicago" in "flights to Chicago" could either
be interpreted as an independent predicate (ARRIVE X CHICAGO)

modifying the flight, or as an argument to a specialized flight
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enumeration function FLIGHT-TC which enumerates flights to a
given destination. In the flight schedules application, the
former interpretation was taken, althouqgh later query
optimization rules (see Smart Quantifiers, below) were able to
transform the resulting MRL expression to a form equivalent to

the latter to gain efficiency.

In general English, there are cases in which it seems moot
whether one should treat a given phrase as filling an arcument
role or as a restricting predicate. However, there are also
clear cases where the head noun 1is definitely a function and
cannot stand alone without some argument being either explicitly
present or inferable from context. In these cases such modifiers
are clearly role fillers. On the other hand, the diversity of
possible modifiers makes it wunlikely that all adjectives and
prepositional phrases could be interpretable as role fillers in
any dgeneral or economical fashion. Thus, the distinction between

predicators and role fillers seems to be necessary.

There 1is another use of a modifier that neither fills an
argument role nor stands as an independent predicate, but rather
changes the interpretation of the head noun. An example is
"modal" in "modal olivine analyses". This adjective: does not
describe a kind of olivine, but rather a kind of analysis that is
different from the normal interpretation one would make of the
head "analysis" by itself. Such modifiers might be called

specializers since they induce a special interpretation on the
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head noun. Note that these distinctions in types of modification
refer to the role a modifier plays in a given construction, not

to anything inherent in the modifier itself.

The sentence "List m~dal olivine analyses for lunar samples
that contain silicon" contains a mixture of the different kinds
of modifiers. The presence of the specializer adjective "modal"
blocks the arplication of the normal NRULE N:ANALYSIS (it has a
NOT template that checks for it), and it enables a different rule
N:MODAL-ANALYSIS instead. The adjective "olivine" and the
prepositional phrase are both interpreted by REFs in the
right-hand side of this rule to fill arqgument slots in the
enumeration function DATALINE. There are no predicators
modifying "analyses", but there is a potential predicator "lunar"
modifying "samples" and a restrictive relative clause also
modifying samples. In LUNAR, the apparently restrictive modifier
"lunar" modifying a word like "samples" is instead interpreted as
a specializer that doesn't make a difference, since LUNAR knows
of no other kind of sample. However, this is clearly not a

limitation of the formalism.

The relative clause modifying "samples" 1is interpreted as
described above to produce the predicate:

(CONTAIN X2 SIO2).
The interpretation of the noun phrase "lunar samples that contain
silicon" thus consists of the SEM X2 and :he QUANT:

(FOR GEN X2 / SAMPLE : (CONTAIN X2 SIO2) ; DLT ).
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This SEM-QUANT pair is returned to the process interpreting the
noun phrase "modal olivine analyses for ... ", wbhich in turn
produces a SEM X1 and a QUANT:

(FOR GEN X2 / SAMPLE : (CONTAIN X2 S102) ;

(FOR GEN X1 / (DATALINE X2 OVERALL OLIV)

=

DLT )).
This 1is returned to the rule interpreting the main verb "list,"
whose right-hand side produces the SEM (PRINTOUT X1) with the
same QUANT as above. This process returns to the PRERULE for
positive imperative sentences, where the quantifiers are grabbed
to produce the interpretation:
(FOR GEN X2 / SAMPLE : (CONTAIN X2 SIO02) ;

(FOR GEN X1 / (DATALINE X2 OVERALL OLIV) : T

-e

(PRINTOUT X1) )).

7.6 Averages and Quantifiers

An interesting <class of quantifier interaction problems

occurs with certain operators such as "average", sum", and
"number". In a sentence such as "What is the average silicon
concentration in breccias", it 1is c¢lear that the generic
"breccias" 1is not to be interpreted as a universal quantifier
dominating the average computation, but rather the average is to
be performed over the set of breccias. A potential way of
interpreting such phrases would be to treat average as a

specializer adjective which, when applied to a noun 1like

"concentration", produces a specialized enumeration function that

- 75 -




computes the average. This speciai interpretation rule, would
then interpret the class being averaged over in a special mode as
a role filler for one of the arguments to the
AVERAGE-CONCENTRATION function. However, this approach would
Jack generality, since it would require a separate interpretation
rule and a separate AVERAGE-X function for every averageable
measurement X. Instead, one would like to tre-* average as a
general operator that can apply to anything averageable. Doing
this, and making it interact correctly with various Qgquantifiers
is handled 1in the LUNAR system by a mechanism of some elegance
and generality. I will describe here the interpretation of
averages; the interpretations of sums and other such operators

are similar.

Note that *here are two superficial forms 1in which the
average operator is used: one is as a simple adjective modifying
a noun ("the average concentration..."), and one 1is as a noun
referring to a function that is explicitly applied to an argument
("the average of concentrations aoo0 ) o LUNAR's grammar
standardizes this variation by transforming the first kind of
structure into the second (effectively insertirg an "of ... PL"
into the sentence). As a result, average always occ.rs in
syntactic tree structures as the head noun of a noun phrase with
a dependent prepositional phrase whose object has a "NIL ... PL"
determiner structure and represents the set of quantities tc be

averaged.
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In interpreting such noun phrases, the NRULE invoked by a
head noun "average™ or "mean" calls for the interpretation of the
set being averaged with the special TYPEFLAG SET. This will
result in that node's being interpreted with a special DRULE
D:SETOF, which will construct an intensional set representaticn
for the set being averéged. The data base function AVERAGE knows
how to wuse such an intensional set to enumerate members and
compute the average. The NRULE for “average" is:

[N:AVERAGE

(NP.N (MEM 1 (MEAN AVERAGE)))
(NP.PP (MEM 2 (QUANTITY)))

-> (QUOTE (SEQL (AVERAGE X / (# 2 2 SET) ))) 1.

7.7 Short Scope / Broad Scope Distinctions

Another interesting aspect of quantifier nesting is a fairly
well-known distinction between so called short-scope and
broad-scope interpretation quantifiers. For example, Boh.ert and
Backer (1967) present an account of the differences between
"every" and "any" and between "some" and "a" in contexts such as
the antecedents of if-then statements by giving "any" and “some"
the broadest possible scope and "every" and "a" the narrowest.

For example, using the LUNAX MRL notatior:

If ay soldier stays home, there is no war

(FOR EVERY x / soldier ; (IF (home x)

THEN (not war))
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If every soldier stays home, there is no war

(IF (FOR EVERY x / soldier ; (home x))

THEN ({not war))

If some soldier stays home, there is no war

(FOR SCME x / soldier ; (IF (home x)

THEN (not war)))

If a soldier stays home, there is no war

(IF (FOR SOME x / soldier ; (home X))

THEN (not war))

The scope rules of Bohnert and Backer are enforced rules of
an artificial language that approximates English and are not,
unfortunately, distinctions that are always followed in ordinary
English. 1In ordinary English, only a few such distinctions are
made consistently, while in other cases the scoping of
quantifiers appears to be determined by which is most plausible

(see discussion of Plausibility Evaluation in Section 10.5 ).

In LUNAR, a slightly different form of this short/broad
s~ope distinction arose in the interaction of operators 1like
average with wuniversal quantifiers. For example, the sentence
"List the average concentration of silicon in breccias" clearly
means to average over all breccias, while "List the average
concentration of silicon in each breccia"™ clearly means to
compute a separate average for each breccia. (In general, there
are multiple mea.urements to average even for a single sample.)

The sentences "List the average concentration of silicon in every
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breccia,”™ and "List the average concentration of silicon in all
breccias" are less clear, but it seems to me that the average
over all breccias is slightly preferred in these cases. At any
rate, the treatment of quantifiers needs to be able to handle the
fact that there are two possible relative scopings of the average
operator with universal quantifiers, and the fact that the choice
is determined at least for the determiner “each"™ and for the

"generic" or NIL-PL determiner.

LUNAR handles these scope distinctions {or the "average"
operator by a general mechanism that applies to any operator that
takes a set as its argument. As discussed above, the right-hand
side of the N:AVERAGE rule calls for the interpretation of the
node representing the set being averaged over with TYPEFLAG SET.
This causes a DRULE D:SETOF to be used for interpreting that
node. The right-hand side of D:SETOF is:

(SETGEN (SETOF X / (# @ NRULES) : (% @ RRULES) ))
where SETGEN is a function that grabs certain quantifiers coming
from subordinate interpretations and turns them into UNION
operations instead. The generic quantifier is grabbed by this
function and interpreted as a union. However, the quantifier
EACH is not grabbed by SETGEN but is passed on up as a dominating
quantifier. Thus, the sentence "What is the average

concentration of silicon in breccias" becomes:
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(FOR THE X4 / (SEQL (AVERAGE X5 /

(UNION X7 / (SEQ TYPECS) : T ;

i (SETOF X6 / (DATALINE X7 OVERALL SI02) : T)))) : T ;
| (PRINTOUT X4) )
(i.e., the average is computed over the set formed by the union
over all type C rocks X7 of the sets of measurements of SIO2 in
the individual X7's). On the other hand, "What is the average
concentration of silicon in each breccia" becomes:
(FOR EACH X12 / (SEQ TYPECS) : T ;
(FOR THE X9 / (SEQL (AVERAGE X109 /
(SETOF X11 / (DATALINE X12 OVERALL SI02) : T ))) : T ;
(PRINTOUT X9) ))

(i.e., a separate average is computed for each type C rock X12).

7.8 Wh Questions

In addition to simple yes/no dquestions and imperative
commands to print the results of computations, LUNAR handles
several kinds of so-called wh questions. Examples are "what is
the concentration of silicon in S10046", "which samples contain
silicon”, and "how many samples are there". These fall into two
classes: those in which an interrogative pronoun stands in the
place of an entire noun phrase, as in the first example, and
those 1in which an interrogative determiner introduces an
otherwise normal noun vphrase. In both cases, the noun phrase
containing the interrogative word is usually brought to the front

of th_ sentence from th~ position that it might otherwise occupy
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in normal declarative word order, but this is not always the

case.

7.8.1 1Interrogative Determiners

The natural representation of the interrogative determiners
would seem to be to treat them just likc any other determiner and

represent a sentence such as the second example above as:

S Q
NP DET WHQ
N SAMPLE
NU PL

AUX TNS PRESENT
VP V CONTAIN

NP NPR SILICON

The intecpretation procedure we have described seems to work
quite well on this structure using a DRULE that matches the
interrogative noun phrase and generates the quantifier:
(FOR EVERY X / (# @ NRULES) : (AND (# @ RRULES) DLT) ;
(PRINTOUT X)) .

Note that the DLT in the quantifier (where the interpretation of
the main clause is to be inserted) is part of the restriction on
the range, and the quantified operator is a command to print out
the answer. The structure of the quantifier in this case seems
somewhat unusual, but the effect is correct and the operation is
a reasonably natural one given the capabilities of the semantic
interpreter.
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However, when we try to apply this kind of analysis to
conjoined sentences, such as "What samples contain silicon and do
not contain sodium," the standard kind of deep structure assigned
by a transformational grammar to conjoined sentences 1is not
compatible with this interpretation. The usual reversal of the
conjunction reduction transformations in a transformational

grammar would produce a structure something like:

S AND
S Q
NP DET WHQ
N SAMPLE
NU PL
AUX TNS PRESENT
VP V CONTAIN
NP NPR SILICON
5 Q

NEG

NP DET WHQ
N SAMPLE
NU PL

AUX TNS PRESENT

NP NPR SODIUM

This structure corresponds to the conjunction of the two
questions "What samples contain silicon" and "What samples do not
contain sodium”, which 1is the interpretation that it would

receive by the LUNAR rules with the above DRULE for
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wh-determiners. However, this is not what the original conjoined
question means; the intended question is asking for samples that

simultaneously contain silicon and do not contain sodium.

In order to handle such sentences, it 1is necessary to
distinguish some constituent that corresponds to the conjunction
of the two predicates "contain silicon" and "not contain sodium",
which is itself a constituent of a higher level "what samples"
operator. To handle such constructions correctly for both
conioined and non-conjoirad constructions, LUNAR's ATN grammar of
English was modified to assign a different structure to
wh-determiner questions than the one that is assigned to other
determiners. These sentences are analyzed as a special type of
sentence, a noun phrase question (NPQ), in which the top 1level
structure of the syntactic representation is that of a noun
phrase, and the matrix sentence occurs as a special kind of
subsidiary relative clause. For example, the sentence "Which

samples contain silicon" is represented syntactically as:

- 83 -




S PMPQ

NP DET WHICHQ

N SAMPLE
NU PL
S QREL

NP DET WHR
N SAMPLE
NU PL
AUX TNS PRESENT
VP V CONTAIN
NP DET NIL
N SILICON
NU SG
This structure provides an embedded S node inside the higher
level question, whose interpretation 1is a predicate with free
variable bound ... the question operator above. This embedded S
node can be conjoined freely with other S nodes, while remaining
under the scope of a single question operator. 1In this case, the
appropriate DRULE (for a wh-determiner in a plural NPQ utterance)
is simply:
[D:WHQ-PL
(NP.DET (AND {(MEM 1 WHQ) (EQU 2 PL)))
->
(QUANT (FOR EVERY X / (# 0 NRULES) :

(# 8 RRULES) ; (PRINTOUT X))) 1.
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Since the matrix sentence has been inserted as a relative clause
in the syntactic structure assigned by the grammar, it will be
interpreted by the RRULE R:REL in the subordinate interpretation
(# © RRULES). A similar rule for interpreting singular noun
phrases ("which sample contains...") produces a quantifier with
<quant> = THE, instead of EVERY, thus capturing the

presupposition that there should be a single answer.

All of the interrogative determiners, "which", "what", and
"how many" are treated in the above fashion. The right-hand side
of the "how many" rule is:

(FOR THE X / (NUMBER X / (# @ NRULES) : (# @ RRULES)) ;

(PRINTQUT X))

Here again, the interpretation of the matrix sentence is picked
up in the call (# @ RRULES). (The use of the same variable name
in two different scopes does not cause any logical problems here,
SO0 no provision was made in LUNAR to create more than one

variable for a given noun phrase.)

7.8.2 1Interrogative Pronouns

A general treatment of the interrogative pronouns would
require modifications of the assigned syntactic structures
similar to the ones discussed above for interrogative determiners
in order to handle conjunctions correctly. That 1is, sentences
such as "what turns generic quantifiers into set unions and

passes 'each' quantifiers through to a higher 1level," seem to
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require an embeded S node to serve as a conjoined proposition
inside a single "what" operator. However, it is far more common
for conjoined questions with interrogative pronouns to be
interpreted as a conjunction of two separate questions. This is
especially true for conjoined "what 1is ..." questions. For
example, "what is the concentration of silicon in S10046 and the
concentration of rubidium in S18884" is clearly not asking for a
single number that happens to be the value of the concentration

in both cases.

The LUNAR system contains rules for handling interrogative
pronouns only in the special case of "what is..." questions. In
this special case, conjoined questions fall into two classes,
both of which seem to be handled correctly without special
provisions in the grammar. In questions where the questioned
noun phrase contains an explicit relative c¢lause, that clause
will contain an S node where conjunctions can be made and LUNAR's
current techniques will treat this as one question with a
conjoined restriction (e.g., "What is the sample that contains
less than 15 percent silicon and contains more than 5 percent
nickel"). On the other hand, when there is no explicit relative
clause, LUNAR will interpret such questions as a conjunction of
separate questions (e.g., "what is the concentration of silicon

in S10046 and the concentration of rubidium in S10084").

The conventional structure assigned to "what is..."

sentences by a transformational grammar represents the surface
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object as the deep subject, with a deep verb "be" and predicate
complement corresponding to . the interrogative pronoun "what".
For example, in LUNAR the question "What is the concentration of
silicon in S10046" becomes:
5 Q
NP DET THE
N CONCENTRATION
NU SG
PP PREP OF
NP DET NIL
N SILICON
NU SG
PP PREP 1IN
NP NPR S10046
AUX TNS PRESENT
VP V BE
NP DET WHQ
N THING

NU SG/PL

A special SRULE for the verb "be" with ‘:omplement "WHQ THING
SG/PL" handles this case with a right-hand side schema:
(QUOTE (PRINTOUT (# 1 1)))

where the REF (# 1 1) refers to the subject noun phrase.

A somewhat more general treatment of the interrogative

pronoun "what" would involve a DRULE whose right-hand side was:
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(FOR EVERY X / THING : DLT ; (PRINTOUT X) )
Where the interpretation of the matrix sentence is to be inserted
as a restriction, on the range of quantification and the overall
interpretation is a command to print out the values that satisfy
it. (THING in this case 1is meant to stand for the universal
class). One would not want to apply this rule in general to the
simple "what 1is ..." questions as above, since it would result
in an interpretation that was 1less efficient (i.e., would
enumerate all possible things and try to filter out the answer
with an equality predicate). For example, "what is the
concentration of silicon in S10@646" would be interpreted:
(FOR THE X / (DATALINE S10646 OVERALL SIO2) : T ;
(FOR EVERY Y / THING : (EQUAL X Y) ;
(PRINTOUT Y) ))
instead of:
(FOR THE X / (DATALINE S18046 OVERALL SIO2) : T ;
(PRINTOUT X)).

Thus, one would still want to keep the special "what is ..."
rule and LUNAR would only use the general rule in cases where the
"what is ..." rule did not apply. (When the "what is ..." rule

does apply, it doesn't even call for the interpretation of the

"what" noun phrase that it has matched, so the general rule would

not be invoked.)

Alternatively, one could use the general rule for all cases
and then perform post-interpretive query optimization (see

Section 8 below) to transform instances of filtering with
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equality predicates to a more efficient form that eliminates the

unnecessary quantification.

7.8.3 Other Kinds of Wh Questions

Mote that LUNAR interprets "what is ..." questions only as a
request for the value of some function or the result of some
search or computation, and not as requesting a definition or
explanation. For example if LUNAR is asked "what is a sample" it
will respond with an examplé (e.g., "S10046"), and if it is asked
"what is S10046", it will respond "S10046". LUNAR is not aware
of the internal structure of the defining procedures for its
terms, nor does it have any intensional description of what
samples are, so it has no way of answering the first type of
question. There is no difficulty, however, in defining another
rule for "what 1is ..." to apply tc proper nouns and produce an
interpretation with an operator NAME-CLASS (instead of PRINTOUT)
that will print the class of an individual instead of its name.
"What 1is S100646" would then be interpr2ted as (NAME-CLASS

10046), which would answer "a sample”.

Getting JUNAR to say something more complete about how
S10046 differs rrom other samples, such =2s "a sample that
contains a large olivine inclusion", is another matter. Amorn~
other problems, this would begin to tread into t+the area of
pragmatics, where considerations such as the user's probable

intent in asking the question and appropriateness ¢f response in
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a particular context, as well as semantic considerations of
meaning, beccme an issue (see Section 11.5). All of this is well
beyond the scope of systems like LUNAR. However, decidina what
semantic representation to assign as the intent of .uch a
question is not nearly as difficult as deciding what the defining
procedure for some of the possible intents should be. LUNAR's
mechanisms are suitable for gernrating the alternative possible

semantic representations.

8. Post-Interpretive Processing

As mentioned before, the LUNAR meaning representation
language has been designed both as a representation of executable
procedures and as a symbolic structure that can be manipulated as
an intensional object. Although every expression in the LUNAR
MRL has an explicit semantics defined by its straightforward
executicn as a procedure, that procedure is frequently not the
best one to execute to answer a question or carry out a command.
For example, in the flight schedules application, the literal
interpretation of the expression:

(FOR EVERY X / FLIGHT : (CONNECT X BOSTON CHICAGO) ;

(PRINTOUT X))
is to enumerate 211 of the flights known to the system, filtering
out the ones that don't go from Boston to Chicago, and printing
out the rest. However, in a reasonable data base for this
domain, there would be various indexes into the flights, breaking

them down by destination city and city of origin. If such an
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index exists, then a specialized enumeration function
FLIGHT-FROM-TO could be defined for using the index to enumerate
only flights from a given city to another. 1In this case, the
ébove request could be represented:

(FOR EVERY X / (FLIGHT-FROM-TO BOSTON CHICAGO) : T

~e

(PRINTOUT X)),

which would be much more efficient to execute.

Given the ©possibility of using specialized (numeration
functions, one can then either write special interpretation rules
to use this more specific enumeration function in the cases where
it is appropriate, or one can perform some intensional
manipulations on the interpretation assigned by the original
rules to transform it into an equivalent expression that is more
efficient to execute. The first ap~roach was used in the
original flight schedules system. An approach similar to the
latter was used in the grammar information system, and to some
extent in LUNAR, by wusing "smart" quantifiers (see below).
Recently, Reiter (1977) has presented a systematic treatment of a
class of query optimizations in systems like LUNAR that interface

to a relational data base.

Other post-interpretive operations on the MRL expression are
performed in LUNAR to analyze the quantifiers and make entries in
a discourse directory for potential antecedents of anaphoric
expressions. Subsequently, definite descriptions and pronouns

can make reference to this directory to select antecedents. I
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will not go into the treatment of anaphoric expressions in this
paper other than to say that the search for the antecedent is
invoked by an operator ANTEQUANT in the right hand side of the
DRULES that interpret anaphoric noun phrases. In general, this
results in the generation of a quantifier, usually a copy of the
one that was associated with the antecedent. Occasionally, the
antecedent will itself fall in the scope of a higher quantifier
on which it depends, in which case such governing quantifiers
will also be copied and incorporated into the current
interpretati:n. Some of the characteristics of LUNAR's treatment

of anaphora are covered in Nash-Webber (1976) and Woods et al.

(1972).

8.1 Smart Quantifiers

In the grammar information system, a notion of "smart"
quantifier was introduced, which rather than blindly executing
the quantification procedure obtained from semantic
interpretation, made an effort to determine if there was a more
specific enumeration function that could be used to obtain an
equivalent answer. In general, the restriction on the range of
quantification determines a subclass of the class over which
guantification 1is ranging. If one can find a specialized
enumeration function that enumerates a subclass of the original
class but is still guaranteed to include any of the members that
would have passed the original restriction, then that subclass

enumeration function can be used in place of the original.
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In the grammar information system, tables of specialized
enumeration functions, together with sufficient conditions for
their use, were stored associated with each basic class over
which quantification could range. A resoluticn theorem prover a
la Robinson (1965) was then used to determine whether the
restriction of a given quantification implied one of the
sufficient ronditions for a more specialized class enumeration
function. If so, the more specialized function was used. Unlike
most applications of resolution theorem proving, the inferences
required in this case are all very short, and since the purpose
of the inference is to improve the efficiency of the
quantification, a ratural bound can be set on the amount of time
the theorem prover should spend before the attempt should be

given up and the original enumeration function used.

In general, sufficiency conditions for specialized
enumeration functions are parameterized with open variables to be
instantiated during the proof of the sufficiency condition and
then used as parameters for the specialized enumeration function.
The resolution theorem proving strategies have a nice feature of
providing such instantiated parameters as a result of their
proofs; e.g., by using a mechanism such as the "answer"

predicate of Green (1969).

Smart quantifiers were intended in general to be capable of
other operations, such as estimating the cost of a computation

from the sizes of the classes being quantified over and the depth
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of quantifier nesting (and warning the user if the cost might be
excessive), saving the results of inner 1loop quantifications
where they could be reused, interchanging the scopes of
quantification to bring things that don't change outside a 1loop,
etc. The capabilities actually implemented, however, are much

more limited.

8.1.1 Path Enumeration in ATN's

Smart quantifiers were essential for efficiency in the
grammar information system's enumeration of paths through its
ATN. The system contained a variety of specialized path
enumeration functions: one for paths between a given pair of
states, one for paths leaving a given state, one for paths
arriving at a given state, one for paths irrespective of end
states, and versions of all of these for looping and non-looping
paths. Each specialized enumeration function was associated with
a parameterized sufficiency condition for its use. For example,
the function for non-looping paths leaving a given state had a
table entry equivalent to:

(PATHSEQ Y T) if (AND (NOLOOP X) (START X Y))
where X refers to the +variable of the class being quantified
over, Y is a parameter to be instantiated, and (PATHSEQ Y T) is

the enumeration function to be used if the sufficiency condition

is satisfied.
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Thus, if a quantification over paths had a restriction such
as (AND (CONNECT-PATH X S/ §S/VE, (NOLOOP X)) and the theorem
prover had axioms such as (CONNECT-PATH X Y 2) => (START X Y),
then the theorem prover would infer that the sufficiency
condition (AND (NOLOOP X) (START X Y)) is satisfied with Y equal
to s/ and therefore the specialized enumeration function

(PATHSEQ S/ T) can be used.

Notice that the order of conjuncts in the restriction is
irrelevant, and the restriction need only imply the sufficiency
condition not match it exactly. In the above, there are still
conditions in the restriction that will have to be checked as a
filter on the output of the specialized enumeration function to
make sure that the end of the path is at state S/VP. Tn general,
it would be nice to remove from the restriction that portion that
is already guaranteed to be satisfied by the new enumeration
function, but that is easier said than done. In the grammar

information system the original restriction was kept and used

unchanged.

8.1.2 Document Retrieval in LUNAR

In the LUNAR system, a special case of smart quantifiers,
without a general theorem prover, is used to handle enumeration
of documents about a topic. When the FOR function determines
that the class of objects being enumerated is DOCUMENT, it looks

for a predicate (ABOUT X TOPIC) in the restriction (possibly in



the scope of a conjunction but not under a negative). It then
uses this topic as a parameter to an inverted file accessing

routine which retrieves documents about a given topic.

8.2 Printing Quantifier Dependencies

The LUNAR MRL permits the natural expression of fairly
complex requests such as "What is the average aluminum
concentration in each of the type ¢ rocks?". The interpretation
of this request would be:

(FOR EVERY X / (SEQ TYPECS) : T ;
(FOR THE Y / (AVERAGE Z / (DATALINE X OVERALL AL203)) : T ;
(PRINTOUT Y) )).
If the PRINTOUT command does nothing more than print out a
representation for the value of its argument, the result of this
command will be nothing more than a 1list of numbers, with no
indication of which number goes with which of the rocks.

Needless to say, this is usually not what the user expected.

For special classes of objects, say concentrations, a
pseudo-solution to this problem would be to adopt a strategy of
always printing out all conceivable dependencies for that object
(e.g., the sample, phase, and element associated with that
concer*ration). This would be sufficient to indicate what
dependencies each answer had on values of arguments, but would
take no account of which of those dependencies was currently

varying and which were fixed by the request. Moreover, this
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approach would not work in the above case, since the objects
being printed are the results of a general purpose numerical
averaging function, which does not necessarily have any
dependencies, depending on what 1is being averaged and what

classes are being averaged over.

LUNAR contains a general solution to this quantifier
dependency problem that is achieved by making the PRINTOUT
command an opaque operator that processes its argument in a
semi-intelligent way as an intensional object. PRINTOUT examines
its argument for the occurrence of free variables. If the
argument is itself a variable, it 1looks up the corresponding
governing quantifier in the discourse directory (the same
directory used for antecedents of anaphoric expressions) and
checks that quantifier for occurrences of free variables. If it
finds free variables in either place, it means that the object it
is about to print has a dependency on those variables. In that
case it prints out the current values of those variables along
with the value that it is about to print out. In the case of the
example above, the variable Y has the corresponding class
(DATALINE X OVERALL SIO2) with restriction T, and is thus
dependent on the variable X. X is the variable that is ranging
over the rocks. As a result, the printout from this request

would look like:
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S16618 12.48 PCT
S16619 12.84 PCT

S16621 12.82 PCT

This mechanism works for arbitrary nesting of any number of

quantifiers.

9. An Example

As an example of the overall operation of the semantic
interpreter to review and illustrate the preceding discussions,

consider the sentence:
"What is the average modal plagioclase concentraticn

for lunar samples that contain rubidium?"

This sentence has the following syntactic structure assigned to

it by the grammar:
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5 Q
NP DET THE
N AVERAGE
NU SG
PP PREP OF
NP DET NIL
ADJ MODAL
ADJ N PLAGIOCLASE
N CONCENTRATION
NU PL
PP PREP FOR
NP DET NIL
ADJ LUNAR
N SAMPLE
NU PL
S REL
NP DET WHR
N SAMPLE
NU PL
AUX TNS PRESENT
VP vV CONTAIN
NP DET NIL
N RUBIDIUM

NU SG
AUX TNS PRESENT
VP V BE
NP DET WHQ
N THING
NU SG/PL

Semantic interpretation begins with a call to INTERP looking
at the topmost S node with TYPEFLAG NIL. The function RULES
looking at an S node with TYPEFLAG NIL returns the global rule
tree PRERULES. These rules 1look for such things as yes/no
question markers, sentential negations, etc. In this case, a
rule PR6 matches and right-hand side, (PRED (# ® SRULES)),
specifies a call to INTERP for the same node with TYPEFLAG

SRULES.

The function RULES 1looking at the S node with TYPEFLAG

S: JLES returns a rule tree which it gets from the dictionary
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entry for the head of the sentence (the verb BE), and in this
case a rule S:BE-WHAT matches. 1Its right-hand side is:

(PRED (PRINTOUT (# 1 1)))

specifying a schema into which the interpretation of the subject

noun phrase is to be inserted.

The semantic interpreter now begins to look at the subject
noun phrase with TYPEFLAG NI%. In this case, RULES 1is smart
enough to check the determiner THE and return the rule tree:

(D: THE-SG2 NIL D:THE-SG NIL D:THE-PL)
of which, the rule D:THE-SG matches successfully. The right-hand
side of this rule is:

(QUANT (FOR THE X / (# @ NRULES) : (# # RRULES) ; DLT))
whrich specifies that a quantifier is to be constructed by
substitufing in the indicated places the interpretations of this

same node with TYPEFLAGs NRULES and RRULES.

The call to interpret the subject noun phiase with TYPEFLAG
NRULES finds a list of NRULES in the dictionary entry for the
word "average", consisting of the single rule N:AVERAGE. This
rule, which we presented previously in Section 7.6, has a
right-hand side:

(QUOTE (SEQL (AVERAGE X / (# 1 1 SET) )))
which calls for the interpretation of the "concentration" noun
phrase with TYPEFLAG SET. The call to interpret the "average"
node with TYPEFLAG RRULES, which will be done later, will result

in the empty restriction T.
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The call to interpret the "concentration" noun phrase with
TYPEFLAG SET wuses a list of rules (D:SETOF NIL D:NOT-SET) where
D:SETOF, which has been discussed previously in Section 7.7,
checks for a determiner and number consistent with a set
interpretation (i.e., determiner THE or NIL and number PL) and
D:NOT-SET will match anything else. In this case, D:SETOF
matches, with right-hand side:

(SETGEN (SETOF X / (# @ NRULES) : (# @ RRULES) ))
and calls for the interpretation of the same node with TYPEFLAGs
NRULES and RRULES. The call with NRULES finds a matching rule
N:MODAL-CONC after failing to .natch N:CONCENTRATION because of
the presence of the adjective MODAL, which is rejected by a
negated template. N:MODAL-CONC is wused to interpret modal
concentrations of minerals in samples as a whole, and has the
form:

[(N:MODAL-CONC
(NP.N (MEM 1 (CONCENTRATION)))
(OR (NP.PP (MEM 2 (SAMPLE)))
(NP,.PP.PP (MEM 2 (SAMPLE)))
(DEFAULT (2 NP (DET EVERY)
(N SAMPLE)
(NU 8G))))
(OR (NP.PP (MEM 2 (PHASE MINERAL ELEMENT OXIDE ISOTOPE)))
(NP.ADJ42 (MEM 2 (PHASE MINERAL ELEMENT OXIDE ISOTOPE))))

=> (QUOTE (DATALINE (# 2 2) OVERALL (# 3 2))) 1.
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(DEFAULT is a special kind of template that always succeeds and
that makes exp}icit bindings for use in the right-hand side. --
In the above case, if the "concentration" noun phrase had not
mentioned a sample, then the default "every sample" would be

assumed.)
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